datawhale&ch6量化调仓策略

量化调仓策略

参考链接:量化调仓策略



一、如何衡量投资组合的收益率

投资组合的收益率是指投资组合在一定时间内的总体收益率。投资组合的收益率可以通过加权平均每个资产的收益率来计算。具体地,假设投资组合中有n个资产,每个资产的收益率为r1, r2, …, rn,每个资产的权重为w1, w2, …, wn,则投资组合的收益率为: 投资组合的收益率 = w 1 × r 1 + w 2 × r 2 + . . . + w n × r n 投资组合的收益率 = w_1 \times r_1 + w_2 \times r_2 + ... + w_n \times r_n 投资组合的收益率=w1×r1+w2×r2+...+wn×rn其中,权重wi表示资产i在投资组合中的占比,满足w1 + w2 + … + wn = 1。投资组合的收益率是衡量投资组合表现的重要指标,它可以帮助投资者评估投资组合的回报水平,并与市场指数或其他投资组合进行比较。

1.投资组合收益率的计算方法

投资组合的收益率不仅取决于投资组合本身的表现,还取决于市场的整体表现。因此,在比较投资组合的收益率时,需要将其与市场平均收益进行比较,以便更好地评估投资组合的表现。因此,衡量投资组合的收益率通常使用两种指标:绝对收益率和相对收益率。

绝对收益率 相对收益率
投资组合的实际收益与初始投资金额之间的比率 投资组合的实际收益与市场平均收益之间的比率
绝对收益率 = 投资组合的实际收益 − 初始投资金额 初始投资金额 × 100 % 绝对收益率 = \frac{投资组合的实际收益 - 初始投资金额}{初始投资金额} \times 100\% 绝对收益率=初始投资金额投资组合的实际收益初始投资金额×100% 相对收益率 = 投资组合的实际收益 − 市场平均收益 市场平均收益 × 100 % 相对收益率 = \frac{投资组合的实际收益 - 市场平均收益}{市场平均收益} \times 100\% 相对收益率=市场平均收益投资组合的实际收益市场平均收益×100%
你的投资组合初始投资金额为 10000 元,最终实现的收益为 12000 元,则绝对收益率为 (12000 - 10000) / 10000 = 0.2,即 20% 你的投资组合实现的收益为 12000 元,而市场平均收益为 10000 元,则相对收益率为 (12000 - 10000) / 10000 = 0.2,即 20%。

二、如何衡量投资组合的风险

1.风险的定义

风险是指在未来可能发生的不确定性事件所带来的潜在损失。
在投资领域中,风险通常指投资所面临的不确定性和潜在的损失。投资的风险通常由多种因素决定,包括市场波动、政治和经济环境、行业和公司的基本面等。投资的风险越高,意味着投资者可能面临更大的损失,但同时也可能获得更高的回报。

2.投资组合的风险

投资组合的风险是指投资组合在未来可能出现的损失或波动的程度。投资组合的风险通常由其波动性、损失概率和损失幅度等因素来衡量。投资组合的风险越高,意味着投资者可能面临更大的损失,但同时也可能获得更高的回报。因此,在进行投资决策时,需要综合考虑投资组合的风险和预期回报,以便做出更加明智的决策。

3.衡量投资组合的风险

投资组合的风险可以通过多种方式进行衡量,以下是一些常见的方法:
①方差和标准差

方差 标准差
每个资产收益率与平均收益率之差的平方的平均值 标准差是方差的平方根
σ 2 = 1 n ∑ i = 1 n ( x i − μ ) 2 \sigma^2 = \frac{1}{n}\sum_{i=1}^{n}(x_i - \mu)^2 σ2=n1i=1n(xiμ)2 σ = 1 n ∑ i = 1 n ( x i − μ ) 2 \sigma = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i - \mu)^2} σ=n1i=1n(xiμ)2

其中, x i x_i xi表示第i个数据点, μ \mu μ表示所有数据点的平均值, n n n表示数据点的数量。

以下Python函数,可以计算投资组合的方差和标准差:

 import numpy as np

 def portfolio_volatility(weights, returns):
 """
     计算投资组合的波动性(标准差)
     :param weights: 投资组合中每个资产的权重
     :param returns: 每个资产的收益率
     :return: 投资组合的标准差
     """
     portfolio_return = np.dot(weights, returns)
     portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(np.cov(returns), weights)))
     return portfolio_volatility

②Beta系数、Value at Risk(VaR)、Conditional Value at Risk(CVaR)

Beta系数 Value at Risk(VaR) Conditional Value at Risk(CVaR)
Beta系数的计算方法是将资产或投资组合的收益率与市场指数的收益率进行回归分析,得到回归系数即为Beta系数,是用来衡量投资组合相对于市场整体波动的指标 VaR是衡量投资组合在一定置信水平下的最大可能损失的指标。 CVaR是VaR的扩展,它衡量的是在VaR损失超过一定阈值时的平均损失
投资组合与市场组合的协方差与市场组合的方差的比值计算 x 1 β i = Cov ⁡ ( r i , r m ) Var ⁡ ( r m ) x1\beta_{i}=\frac{\operatorname{Cov}\left(r_{i}, r_{m}\right)}{\operatorname{Var}\left(r_{m}\right)} x1βi=Var(rm)Cov(ri,rm) α ∈ ( 0 , 1 ) \alpha \in(0,1) α(0,1) F L F_{L} FL为事件 L L L的分布函数,则VaR如下 VaR ⁡ α ( L ) = = inf ⁡ { y ∈ R ∣ F L ( y ) ≥ α } \ope
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值