# PAT (Advanced Level) Practice 1064 Complete Binary Search Tree (30 分)

## 题目

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

• The left subtree of a node contains only nodes with keys less than the node’s key.
• The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
• Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

#### Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

#### Output Specification:

For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

#### Sample Input:

10
1 2 3 4 5 6 7 8 9 0


#### Sample Output:

6 3 8 1 5 7 9 0 2 4


#### 代码

#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
int a[1001],T[1001];
int GetleftLength(int s)
{
int cs = int(log(s)/log(2));
int x = s - pow(2,cs) + 1;
int m;
if(x <= pow(2,cs-1))
m = x ;
else
m = pow(2,cs-1);
m = m + pow(2,cs-1) - 1;
return m;
}
void solve(int left,int right,int troot)
{
int s = right - left + 1;
if(s == 0)
return ;
int L = GetleftLength(s);//计算出n个结点的树其左子树有几个节点
T[troot] = a[left+L];
int leftroot = troot*2;
int rightroot = leftroot + 1;
solve(left,left+L-1,leftroot);
solve(left+L+1,right,rightroot);
}
int main()
{
int n;
cin >> n;

for(int i = 1;i <= n;i++)
{
cin >> a[i];
}
sort(a+1,a+n+1);
solve(1,n,1);
for(int i = 1;i < n;i++)
{
cout << T[i] << " ";
}
cout << T[n];
return 0;
}

• 点赞
• 评论
• 分享
x

海报分享

扫一扫，分享海报

• 收藏
• 打赏

打赏

weixin_43820008

你的鼓励将是我创作的最大动力

C币 余额
2C币 4C币 6C币 10C币 20C币 50C币
• 举报
• 一键三连

点赞Mark关注该博主, 随时了解TA的最新博文

06-25 95
12-27 259