PAT (Advanced Level) Practice 1064 Complete Binary Search Tree (30 分)

题目

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node’s key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
  • Both the left and right subtrees must also be binary search trees.
    A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

Output Specification:

For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input:

10
1 2 3 4 5 6 7 8 9 0

Sample Output:

6 3 8 1 5 7 9 0 2 4

这道题要是不会的话可以去看看mooc上陈越老师的《数据结构》,专门分析了这一题

代码

#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
int a[1001],T[1001];
int GetleftLength(int s)
{
	int cs = int(log(s)/log(2));
	int x = s - pow(2,cs) + 1;
	int m;
	if(x <= pow(2,cs-1))
		m = x ;
	else
		m = pow(2,cs-1);
	m = m + pow(2,cs-1) - 1;
	return m;
}
void solve(int left,int right,int troot)
{
	int s = right - left + 1;
	if(s == 0)
		return ;
	int L = GetleftLength(s);//计算出n个结点的树其左子树有几个节点 
	T[troot] = a[left+L];
	int leftroot = troot*2;
	int rightroot = leftroot + 1;
	solve(left,left+L-1,leftroot);
	solve(left+L+1,right,rightroot);	
} 
int main()
{
	int n;
	cin >> n;

	for(int i = 1;i <= n;i++)
	{
		cin >> a[i];
	}
	sort(a+1,a+n+1);
	solve(1,n,1);
	for(int i = 1;i < n;i++)
	{
		cout << T[i] << " ";
	}
	cout << T[n];
	return 0;
 } 
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页