51nod 1616 最小集合(数论)

1616 最小集合

A君有一个集合。
这个集合有个神奇的性质。
若X,Y属于该集合,那么X与Y的最大公因数也属于该集合。
但是他忘了这个集合中原先有哪些数字。
不过幸运的是,他记起了其中n个数字。
当然,或许会因为过度紧张,他记起来的数字可能会重复。
他想还原原先的集合。
他知道这是不可能的……
现在他想知道的是,原先这个集合中至少存在多少数。

样例解释:

该集合中一定存在的是{1,2,3,4,6}

输入

第一行一个数n(1<=n<=100000)。
第二行n个数,ai(1<=ai<=1000000,1<=i<=n)。表示A君记起来的数字。
输入的数字可能重复。

输出

输出一行表示至少存在多少种不同的数字。

输入样例

5
1 3 4 6 6

输出样例

5

题解

该集合中一定存在输入的数字中若干数的最大公因数。
这个证明比较简单,例如我们有 a1, a2, …, an 这些数,那么 gcd(a1,a2) 一定存在该集合,然后 gcd(a1,a2,a3) 也一定存在该集合,依次类推。
所以我们对于每个数i,都求出在n个数中有多少数是它的倍数,记为 f(i) 。
然后观察 f(2× i), f(3× i), …, f(x× i), … 中是否存在一个数等于 f(i) ,若不存在,则i一定存在于该集合。

代码
#include <iostream>
#include <cstdio>
#include <cmath>

#define ll long long
using namespace std;
const int maxn = 1e6 + 10;
const int mod = 1e9 + 7;
int a[maxn];
int have[maxn];
int sum[maxn];

int main() {
    int n;
    cin >> n;
    int mx = 0;
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
        mx = max(a[i], mx);
        have[a[i]] = 1;
    }
    for (int i = 1; i <= mx; i++) {
        for (int j = i; j <= mx; j += i) {
            if (have[j]) {
                sum[i]++;
            }
        }
    }
    int ans = 0;
    for (int i = 1; i <= mx; i++) {
        if (sum[i] == 0) {
            continue;
        }
        int flag = 0;
        for (int j = i + i; j <= mx; j += i) {
            if (sum[i] == sum[j]) {
                flag = 1;
                break;
            }
        }
        if (!flag) {
            ans++;
        }
    }
    cout << ans << endl;
    return 0;
}
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页