[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

本文分析了Faster R-CNN在多任务学习和共享backbone中的问题,并提出解耦梯度层(GDL)和原型校准块(PCB),以解决在少样本对象检测中的性能挑战。实验表明,DeFRCN在多个基准测试中优于现有最佳方法。
摘要由CSDN通过智能技术生成
image-20210831101014856

1. Motivation

​ 本文基于Transfer-Learning Based 以及 Faster R-CNN进行改进。

​ 本文针对分类和回归任务中存在的矛盾点进行分析:

  • In this paper, we look closely into the conventional Faster R-CNN and analyze its contradictions from two orthogonal perspectives, namely multi-stage (RPN vs. RCNN) and multi-task (classification vs. localization).

2. Contribution

本文关于网络结构的2个创新点, Gradient Decoupled Layer用于多阶段的解耦,Prototypical Calibration Block用于多任务的解耦。

其中GDL是针对backbone,来解耦之前层和后面层;而PCB则是offline的prototype的分类层,用于boost原有的分类层。

  • We look closely into the conventional Faster R-CNN and propose a simple yet effective architecture for few-shot detection, named Decoupled Faster R-CNN, which can be learned end-to-end via straightforward fine-tuning.
  • To deal with the data-scarce scenario, we further present two novel modules, i.e. GDL and PCB, to perform de- coupling among multiple components of Faster R-CNN and boost classification performance respectively.
  • DeFRCN is remarkably superior to SOTAs on various benchmarks, revealing the effectiveness of our approach.

3. Method

image-20210831101052191

Backbone、RPN、Box Classifier以及Regressor在fine-tune阶段是trainable,而RCNN是frozen的。

Problem of multi-task learning

作者认为对于多任务学习来说,子网络的优化目标存在不一致性。

RPN是where to look, RCNN是what to look

classification head需要translation invariant features,而localization head 需要translation covariant features。

因此,可能导致一个suboptimal solution

Problem of shared backbone

由于Backbone的梯度回传和RCNN以及 RPN有关,但是这2者有一定的矛盾性,因此,作者认为这可能会导致FSOD性能的下降。并且在FSOD中,第二阶段的RPN会受到更多的前景-背景的混淆问题foreground-background confusion。因此可能造成对于base classes过拟合梯度的传播,到backbone以及RCNN

  • which means a pro- posal that belongs to background in the base training phase is likely to be foreground in the novel fine-tuning phase

3.1 Gradient Decoupled Layer

image-20210831102916215
  • Perform Decoupling with GDL

    image-20210831102931011
  • Optimization with GDL
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3.2 Prototypical Calibration Blo

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值