1. Motivation
- Our main insight is that the classifiers in existing object proposers or class agnostic detectors impedes such generalization, because the model tends to overfit to labeled objects and treat the unlabeled objects in the training set as background.
- This matches the ability of human to detect novel objects in new environments without naming their categories
2. Contribution
- To our knowledge, we are the first to show the value of pure localization-based objectness learning for novel object proposals, and propose a simple-yet-effective classifier-free Object Localization Network (OLN).
- Our approach outperforms state-of-the-art methods on cross-category setting on COCO and improves cross- dataset settings on RoboNet and Object365, long-tail detection (LVIS) and egocentric videos (EpicKitchens) over the standard approach.
- We carefully annotated the RoboNet dataset for the presence of all objects in an exhaustive fashion. We perform open-world class-agnostic object detection, and evaluate the Average Precision, which also improves existing AR-based evaluation of proposals on partially-annotated data.
- Extensive ablation and analysis on OLN modeling choices reveal the benefits of each localization cue and the overfitting of existing classifier-based methods.
本文提出了一种名为Object Localization Network (OLN)的方法,旨在学习纯定位对象性,以提高对未见过类别的一般化能力。OLN通过去除分类器,避免过拟合,从而改进了RPN和 Faster R-CNN。实验表明,OLN在跨类别和跨数据集设置上表现出色,尤其是在处理长尾检测和第一人称视频方面。
最低0.47元/天 解锁文章
663

被折叠的 条评论
为什么被折叠?



