1. Motivation
这篇文章中,作者针对图1出现的2个问题,指出,由于support 和query img 之间的关系没法完全提取,因为之前的方法都是使用GAP的方法,没有考虑局部信息。其次,对于分类估计错误,以及遮挡的问题,
- Firstly, relations between support fea- tures and query feature are hardly fully explored in previous few-shot detection works, where global pooling opera- tion on support features is mostly adopted to modulate the query branch, which is prone to loss of detailed local context.
- Specifically, appearance changes and occlusions are common for objects, as shown Fig. 1.
2. Contribution
- We propose a dense relation distillation module for few-shot detection problem,
DCNet是针对少样本目标检测问题提出的一种密集关系蒸馏模块,通过适应性上下文感知特征聚合模块更好地捕捉全局和局部特征,解决了尺度变化问题。在PASCAL VOC和MS COCO数据集上,该方法表现优于当前最先进的方法。
最低0.47元/天 解锁文章
849

被折叠的 条评论
为什么被折叠?



