DCNet (CVPR. 2021)

DCNet是针对少样本目标检测问题提出的一种密集关系蒸馏模块,通过适应性上下文感知特征聚合模块更好地捕捉全局和局部特征,解决了尺度变化问题。在PASCAL VOC和MS COCO数据集上,该方法表现优于当前最先进的方法。
摘要由CSDN通过智能技术生成
image-20210824113805518

1. Motivation

这篇文章中,作者针对图1出现的2个问题,指出,由于support 和query img 之间的关系没法完全提取,因为之前的方法都是使用GAP的方法,没有考虑局部信息。其次,对于分类估计错误,以及遮挡的问题,

  • Firstly, relations between support fea- tures and query feature are hardly fully explored in previous few-shot detection works, where global pooling opera- tion on support features is mostly adopted to modulate the query branch, which is prone to loss of detailed local context.
  • Specifically, appearance changes and occlusions are common for objects, as shown Fig. 1.
image-20210824151701443

2. Contribution

  • We propose a dense relation distillation module for few-shot detection problem,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值