DCNet (CVPR. 2021) 1. Motivation这篇文章中,作者针对图1出现的2个问题,指出,由于support 和query img 之间的关系没法完全提取,因为之前的方法都是使用GAP的方法,没有考虑局部信息。其次,对于分类估计错误,以及遮挡的问题,Firstly, relations between support fea- tures and query feature are hardly fully explored in previous few-shot detection works, where gl.
[OLN] Learning Open-World Object Proposals without Learning to Classify 1. MotivationOur main insight is that the classifiers in existing object proposers or class agnostic detectors impedes such generalization, because the model tends to overfit to labeled objects and treat the unlabeled objects in the training set as ba.
[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021) 1. Motivation 本文基于Transfer-Learning Based 以及 Faster R-CNN进行改进。 本文针对分类和回归任务中存在的矛盾点进行分析:In this paper, we look closely into the conventional Faster R-CNN and analyze its contradictions from two orthogonal perspectives, namely multi-stage (RPN vs. RCNN.
[FSCE]FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding(CVPR. 2021) 1. Motivation本文是基于fine-tuning based方法In this work, we observe and address the essential weakness of the fine- tuning based approach – constantly mislabeling novel in- stances as confusable categories, and improve the few-shot detection performance to t.
[Retentive R-CNN] Generalized Few-Shot Object Detection without Forgetting(CVPR. 2021) 1. Motivation本文关注于fine-tune后的FSOD模型会在base classes上性能下降的问题。这篇文章构建了Retentive R-CNN,创新点在于Bias-Balance RPN Re-detector,用来在识别novel classes的同时,不降低原有的base classes的精度However, the majority focus merely on the performance of few-shot categories and ignore the ca.
Few-Shot Object Detection via Classification Refinement and Distractor Retreatment(CVPR. 2021) 1. MotivationThe current state-of-the-art approach TFA [17] is still far away from satisfaction compared with those general data-abundant detection tasksGiven the fact that TFA is IOU-aware but less semantic discriminative, our key insight is to enh.
[TFA] Frustratingly Simple Few-Shot Object Detection(ICML. 2020) 1. Contribution 分类任务上的few-shot研究较多,相比之前FSOD收到较少的关注。Detecting rare objects from a few examples is an emerging problem.However, much of this work has focused on basic image classification tasks. In contrast, few-shot object detection has received .
[SRR-FSD] Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection(CVPR. 2021) [外链图片转存中…(img-7uQh5Zw9-1628130409148)]1. Motivationfew shot 本身存在的意义:In other words, we are unable to alleviate the situation of scarce cases by simply spend- ing more money on annotation even big data is accessible.Therefore, the study of few-shot
Probablitic two-stage detection 1. MotivationWhile the second stage has a probabilistic interpretation, the combination of the two stages does not.A probabilistic two-stage detector is faster and more accu- rate than both its one- and two-stage precursors.2. ContributionWe build .
[LETR]Line Segment Detection Using Transformers without Edges(CVPR.2021 oral) 1. MotivationDespite its practical and scientific importance, line segment detection remains an unsolved problem in computer vision.Deep learning techniques still consist of heuristics-guided modules such as edge/junction/region detection, line grou.
[OVD]Open-Vocabulary Object Detection Using Captions(CVPR. 2021 oral) 1. MotivationDespite the remarkable accuracy of deep neural networks in object detection, they are costly to train and scale due to supervision requirements.Weakly supervised and zero-shot learning techniques have been explored to scale object detec.
[Det-AdvProp] Robust and Accuracy Object Detection via Adversarial Learning(CVPR. 2021) 1. Motivation数据增强在分类网络中应用广泛,但是在目标检测中under-explored.Data augmentation has become a de facto component for training high-performance deep image classifiers, but its potential is under-explored for object detection.In this paper, we aim to enhance this l.
[IQDet] (CVPR. 2021) 1. MotivationThe improvements in sampling strategies can be divided into two tendencies.(1) From Static to Dynamic.(2) From Sample-wise to Instance-wise.These sampling strategies might have a few limitations.(1) Static rules are not learnable and.
[Auto-Aug] Scale-aware Automatic Automentation for Object Detection(CVPR. 2021) 1. Motivation这篇文章主要关注于目标检测中的数据增强。This paper focuses on data augmentation for object detection.之前的工作,对于如何将尺度适应性融入网络的方法主要来源与网络的结构(FPN)以及数据增强。Previous work handles this challenge which brings the scale adaptation to the network efficiently mainly f.
[OTA]Optimal Transport Assignment for Object Detection(CVPR. 2021) 1. MotivationDeTR [3] examines the idea of global optimal matching. But the Hungarian algo- rithm they adopted can only work in a one-to-one assign- ment manner.One-to-Many 的方法。So far, for the CNN based detectors in one-to-many scenarios, a global .
python logging日志笔记 import loggingimport oslogging.basicConfig( format='[%(asctime)s] %(message)s', # format 和 datefmt都要有。 datefmt='%Y/%M/%d %H:%M:%S', level=logging.DEBUG, handlers=[ logging.FileHandler(os.path.join('/home/you/you/chenwei/AdelaiDe
Cycle GAN(ICCV. 2017) 1. MotivationFor many tasks, paired training data will not be available.We present an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples.对于Cycle consistent的引入很重要,否则会出现模式崩溃的问题,所有输入.
Leetcode Daily 文章目录342. 4的幂1744. 你能在你最喜欢的那天吃到你最喜欢的糖果吗?523. 连续的子数组和525. 连续数组160. 相交链表203. 移除链表元素[474. 一和零](https://leetcode-cn.com/problems/ones-and-zeroes/)[797. 所有可能的路径](https://leetcode-cn.com/problems/all-paths-from-source-to-target/)[494. 目标和](https://leetcode-cn.com