Ah丶Weii
码龄6年
关注
提问 私信
  • 博客:117,473
    117,473
    总访问量
  • 97
    原创
  • 2,119,459
    排名
  • 595
    粉丝
  • 0
    铁粉

个人简介:...

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:美国
  • 加入CSDN时间: 2018-11-27
博客简介:

Ah丶Weii

博客描述:
——愿我们在走到路的末端时,都不会后悔。
查看详细资料
个人成就
  • 获得135次点赞
  • 内容获得146次评论
  • 获得656次收藏
  • 代码片获得405次分享
创作历程
  • 2篇
    2022年
  • 57篇
    2021年
  • 21篇
    2020年
  • 21篇
    2019年
成就勋章
TA的专栏
  • 笔记
    44篇
  • 学习
    29篇
  • leetcode
    1篇
  • 考核
    10篇
  • GitHub
    2篇
  • 毕设
    1篇
  • PAT
    1篇
  • 推免过程
    2篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

[FGD] Focal and Global Knowledge Distillation for detectors (CVPR. 2022)

.
原创
发布博客 2022.07.17 ·
1390 阅读 ·
2 点赞 ·
1 评论 ·
1 收藏

FreeSOLO: Learning to Segment Objects without Annotations* (CVPR. 2022)

freesolo
原创
发布博客 2022.07.17 ·
1181 阅读 ·
0 点赞 ·
2 评论 ·
2 收藏

DCNet (CVPR. 2021)

1. Motivation这篇文章中,作者针对图1出现的2个问题,指出,由于support 和query img 之间的关系没法完全提取,因为之前的方法都是使用GAP的方法,没有考虑局部信息。其次,对于分类估计错误,以及遮挡的问题,Firstly, relations between support fea- tures and query feature are hardly fully explored in previous few-shot detection works, where gl.
原创
发布博客 2021.09.22 ·
2183 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

[OLN] Learning Open-World Object Proposals without Learning to Classify

1. MotivationOur main insight is that the classifiers in existing object proposers or class agnostic detectors impedes such generalization, because the model tends to overfit to labeled objects and treat the unlabeled objects in the training set as ba.
原创
发布博客 2021.09.06 ·
1026 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

1. Motivation​ 本文基于Transfer-Learning Based 以及 Faster R-CNN进行改进。​ 本文针对分类和回归任务中存在的矛盾点进行分析:In this paper, we look closely into the conventional Faster R-CNN and analyze its contradictions from two orthogonal perspectives, namely multi-stage (RPN vs. RCNN.
原创
发布博客 2021.09.02 ·
1556 阅读 ·
2 点赞 ·
1 评论 ·
13 收藏

[FSCE]FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding(CVPR. 2021)

1. Motivation本文是基于fine-tuning based方法In this work, we observe and address the essential weakness of the fine- tuning based approach – constantly mislabeling novel in- stances as confusable categories, and improve the few-shot detection performance to t.
原创
发布博客 2021.08.25 ·
2289 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

[Retentive R-CNN] Generalized Few-Shot Object Detection without Forgetting(CVPR. 2021)

1. Motivation本文关注于fine-tune后的FSOD模型会在base classes上性能下降的问题。这篇文章构建了Retentive R-CNN,创新点在于Bias-Balance RPN Re-detector,用来在识别novel classes的同时,不降低原有的base classes的精度However, the majority focus merely on the performance of few-shot categories and ignore the ca.
原创
发布博客 2021.08.18 ·
915 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

Few-Shot Object Detection via Classification Refinement and Distractor Retreatment(CVPR. 2021)

1. MotivationThe current state-of-the-art approach TFA [17] is still far away from satisfaction compared with those general data-abundant detection tasksGiven the fact that TFA is IOU-aware but less semantic discriminative, our key insight is to enh.
原创
发布博客 2021.08.09 ·
810 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

[TFA] Frustratingly Simple Few-Shot Object Detection(ICML. 2020)

1. Contribution​ 分类任务上的few-shot研究较多,相比之前FSOD收到较少的关注。Detecting rare objects from a few examples is an emerging problem.However, much of this work has focused on basic image classification tasks. In contrast, few-shot object detection has received .
原创
发布博客 2021.08.09 ·
1681 阅读 ·
0 点赞 ·
2 评论 ·
3 收藏

[SRR-FSD] Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection(CVPR. 2021)

[外链图片转存中…(img-7uQh5Zw9-1628130409148)]1. Motivationfew shot 本身存在的意义:In other words, we are unable to alleviate the situation of scarce cases by simply spend- ing more money on annotation even big data is accessible.Therefore, the study of few-shot
原创
发布博客 2021.08.07 ·
749 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Probablitic two-stage detection

1. MotivationWhile the second stage has a probabilistic interpretation, the combination of the two stages does not.A probabilistic two-stage detector is faster and more accu- rate than both its one- and two-stage precursors.2. ContributionWe build .
原创
发布博客 2021.08.02 ·
276 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[LETR]Line Segment Detection Using Transformers without Edges(CVPR.2021 oral)

1. MotivationDespite its practical and scientific importance, line segment detection remains an unsolved problem in computer vision.Deep learning techniques still consist of heuristics-guided modules such as edge/junction/region detection, line grou.
原创
发布博客 2021.07.22 ·
526 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

[OVD]Open-Vocabulary Object Detection Using Captions(CVPR. 2021 oral)

1. MotivationDespite the remarkable accuracy of deep neural networks in object detection, they are costly to train and scale due to supervision requirements.Weakly supervised and zero-shot learning techniques have been explored to scale object detec.
原创
发布博客 2021.07.21 ·
1260 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

[Det-AdvProp] Robust and Accuracy Object Detection via Adversarial Learning(CVPR. 2021)

1. Motivation数据增强在分类网络中应用广泛,但是在目标检测中under-explored.Data augmentation has become a de facto component for training high-performance deep image classifiers, but its potential is under-explored for object detection.In this paper, we aim to enhance this l.
原创
发布博客 2021.07.21 ·
741 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

[IQDet] (CVPR. 2021)

1. MotivationThe improvements in sampling strategies can be divided into two tendencies.(1) From Static to Dynamic.(2) From Sample-wise to Instance-wise.These sampling strategies might have a few limitations.(1) Static rules are not learnable and.
原创
发布博客 2021.07.15 ·
364 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

[Auto-Aug] Scale-aware Automatic Automentation for Object Detection(CVPR. 2021)

1. Motivation这篇文章主要关注于目标检测中的数据增强。This paper focuses on data augmentation for object detection.之前的工作,对于如何将尺度适应性融入网络的方法主要来源与网络的结构(FPN)以及数据增强。Previous work handles this challenge which brings the scale adaptation to the network efficiently mainly f.
原创
发布博客 2021.07.15 ·
659 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

[OTA]Optimal Transport Assignment for Object Detection(CVPR. 2021)

1. MotivationDeTR [3] examines the idea of global optimal matching. But the Hungarian algo- rithm they adopted can only work in a one-to-one assign- ment manner.One-to-Many 的方法。So far, for the CNN based detectors in one-to-many scenarios, a global .
原创
发布博客 2021.07.14 ·
2495 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

python logging日志笔记

import loggingimport oslogging.basicConfig( format='[%(asctime)s] %(message)s', # format 和 datefmt都要有。 datefmt='%Y/%M/%d %H:%M:%S', level=logging.DEBUG, handlers=[ logging.FileHandler(os.path.join('/home/you/you/chenwei/AdelaiDe
原创
发布博客 2021.07.09 ·
111 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Cycle GAN(ICCV. 2017)

1. MotivationFor many tasks, paired training data will not be available.We present an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples.对于Cycle consistent的引入很重要,否则会出现模式崩溃的问题,所有输入.
原创
发布博客 2021.06.30 ·
157 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Leetcode Daily

文章目录342. 4的幂1744. 你能在你最喜欢的那天吃到你最喜欢的糖果吗?523. 连续的子数组和525. 连续数组160. 相交链表203. 移除链表元素[474. 一和零](https://leetcode-cn.com/problems/ones-and-zeroes/)[797. 所有可能的路径](https://leetcode-cn.com/problems/all-paths-from-source-to-target/)[494. 目标和](https://leetcode-cn.com
原创
发布博客 2021.06.30 ·
228 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多