2019.5.15 Windows 10 + tensorflow-gpu-1.13.1 + CUDA10.0 + cuDNN 安装过程图文

终于配置好了tensorflow-gpu环境,下面是全部过程的总结:

环境:Windows 10 + GTX1060

核心:紧跟官网操作步骤,别想骚操作

https://tensorflow.google.cn/install/source_windows

Step 1:安装VS2019

是的,已经9102年了再看其他博客安装VS2017我真的头皮发麻,就应该安装VS2019

这里是链接

这里的步骤就省略了。。。

安装时的模块必选项(看截图):注意红框勾选

不要更改安装路径,安装在默认路径

Step 2:安装CUDA10.0

假设你已经下好了CUDA10.0的离线(local)安装包(2G左右,看清楚了local版本还是network版本):

https://developer.nvidia.com/cuda-toolkit-archive

这种事情别用最新版本就对了

OK,让我们开始安装

安装过程不要改动路径

以下是我的选择:

照我的选择做就可以了。。注意一点:驱动版本必须是411以上,注意这点就好

Step 3:安装cuDNN

首先必须注册成为英伟达的成员,打开下面网站

https://developer.nvidia.com/rdp/cudnn-download

假设你已经注册完成了,选择agree之后就下载这个版本:v7.4.1 for 10.0 

别下其他的版本,我被英伟达的版本更新速度和tensorflow的支持速度搞怕了

安装完成之后,直接把里面tools那个文件夹解压出来放到C盘根目录就行!!!!!!!!!

别听其他博客什么放到英伟达CUDA的开发工具路径下

官方的指南都是直接放到根目录下

Step 4:配置系统环境变量

不用我讲了吧,如果你是跟着我做的,就直接下面照抄:

然后确定->确定->确定就行

Step 5:安装tensorflow-gpu-1.13.1

我用的是python3.6

这还不简单?

pip install tensorflow-gpu==1.13.1

如果嫌慢:

pip install --user -U --index-url http://mirrors.aliyun.com/pypi/simple/ tensorflow-gpu==1.13.1 --trusted-host mirrors.aliyun.com

爽了吗?

Step 6:测试

跑个demo吧!

# 测试tensorflow环境
import tensorflow as tf

# 定义两个张量
a = tf.constant([1.0, 2.0], name="a")
b = tf.constant([3.0, 4.0], name="b")

# 将两个向量相加
result = a + b

# 定义一个tensorflow对话
sess = tf.Session()

# 运行对话后打印出结果
print(sess.run(result))
print('出现结果则表明tensorflow-gpu已正确安装')

恭喜你安装完成啦!

©️2020 CSDN 皮肤主题: 像素格子 设计师:CSDN官方博客 返回首页