Tensorflow【实战Google深度学习框架】编程基础小漂亮总结

TensorFlow框架 专栏收录该内容
15 篇文章 1 订阅

前言

代码自己运行,可以观察到规律,这里不做截图。

1 编程模型

在这里插入图片描述

2 Session操作

import tensorflow as tf
hello=tf.constant("hello tf!")
sess=tf.Session()
print(sess.run(hello))
sess.close()
a=tf.constant(3)
b=tf.constant(4)
with tf.Session() as sess:
    print("相加:",sess.run(a+b))
#注入示例
c=tf.placeholder(tf.int16)
d=tf.placeholder(tf.int16)
add=tf.add(c,d)
mul=tf.multiply(c,d)
with tf.Session() as sess2:
    print("相乘:",sess2.run(mul,feed_dict={c:3,d:4}))
    print(sess2.run([add,mul],feed_dict={c:3,d:4}))

3 Variable

import tensorflow as tf
tf.reset_default_graph()
var1=tf.Variable(1.0,name='firstvar')
print("var1",var1.name)
var1=tf.Variable(2.0,name='firstvar')
print("var1",var1.name)
var2=tf.Variable(3.0)
print("var2",var2.name)
var2=tf.Variable(4.0)
print("var2",var2.name)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print('var1=',var1.eval())
    print('var2=',var2.eval())
get_var1=tf.get_variable("firstvar",[1],initializer=tf.constant_initializer(0.1))
print("get_var1",get_var1.name)
get_var1=tf.get_variable("firstvar1",[1],initializer=tf.constant_initializer(0.2))
print("get_var1",get_var1.name)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print("get_var1:",get_var1.eval())

3.1 variable_scope和get_variable

在这里插入图片描述
在这里插入图片描述

3.2 作用域和操作(name_scope)

在这里插入图片描述

4 图的基本操作



import tensorflow as tf

c=tf.constant(0.0)
g=tf.Graph()
with g.as_default():
    c1=tf.constant(0.0)
    print(c1.graph)
    print(g)
    print(c.graph)

g2=tf.get_default_graph()
print(g2)

tf.reset_default_graph()
g3=tf.get_default_graph()
print(g3)
#获取张量
print(c1.name)
t=g.get_tensor_by_name(name='Const:0')
print(t)
#获取节点操作op
a=tf.constant([[1.0,2.0]])
print('a.shape',a.shape)
b=tf.constant([[1.0],[2.0]])
print('b.shape',b.shape)
tensor1=tf.matmul(a,b,name='exampleop')
print(tensor1.name,tensor1)
test=g3.get_tensor_by_name('exampleop:0')
print(test)

print('tensor1.op.name',tensor1.op.name)
testop=g3.get_operation_by_name("exampleop")
print('testop',testop)

tt2=g.get_operations()
print(tt2)

tt3=g.as_graph_element(c1)
print(tt3)

5 注意tensorboard的使用

点这里!

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

第1章 深度学习简介 1 1.1 人工智能、机器学习与深度学习 2 1.2 深度学习的发展历程 7 1.3 深度学习的应用 10 1.3.1 计算机视觉 10 1.3.2 语音识别 14 1.3.3 自然语言处理 15 1.3.4 人机博弈 18 1.4 深度学习工具介绍和对比 19 结 23 第2章 TensorFlow环境搭建 25 2.1 TensorFlow的主要依赖包 25 2.1.1 Protocol Buffer 25 2.1.2 Bazel 27 2.2 TensorFlow安装 29 2.2.1 使用Docker安装 30 2.2.2 使用pip安装 32 2.2.3 从源代码编译安装 33 2.3 TensorFlow测试样例 37 结 38 第3章 TensorFlow入门 40 3.1 TensorFlow计算模型——计算图 40 3.1.1 计算图的概念 40 3.1.2 计算图的使用 41 3.2 TensorFlow数据模型——张量 43 3.2.1 张量的概念 43 3.2.2 张量的使用 45 3.3 TensorFlow运行模型——会话 46 3.4 TensorFlow实现神经网络 48 3.4.1 TensorFlow游乐场及神经网络简介 48 3.4.2 前向传播算法简介 51 3.4.3 神经网络参数与TensorFlow变量 54 3.4.4 通过TensorFlow训练神经网络模型 58 3.4.5 完整神经网络样例程序 62 结 65 第4章 深层神经网络 66 4.1 深度学习与深层神经网络 66 4.1.1 线性模型的局限性 67 4.1.2 激活函数实现去线性化 70 4.1.3 多层网络解决异或运算 73 4.2 损失函数定义 74 4.2.1 经典损失函数 75 4.2.2 自定义损失函数 79 4.3 神经网络优化算法 81 4.4 神经网络进一步优化 84 4.4.1 学习率的设置 85 4.4.2 过拟合问题 87 4.4.3 滑动平均模型 90 结 92 第5章 MNIST数字识别问题 94 5.1 MNIST数据处理 94 5.2 神经网络模型训练及不同模型结果对比 97 5.2.1 TensorFlow训练神经网络 97 5.2.2 使用验证数据集判断模型效果 102 5.2.3 不同模型效果比较 103 5.3 变量管理 107 5.4 TensorFlow模型持久化 112 5.4.1 持久化代码实现 112 5.4.2 持久化原理及数据格式 117 5.5 TensorFlow最佳实践样例程序 126 结 132 第6章 图像识别与卷积神经网络 134 6.1 图像识别问题简介及经典数据集 135 6.2 卷积神经网络简介 139 6.3 卷积神经网络常用结构 142 6.3.1 卷积层 142 6.3.2 池化层 147 6.4 经典卷积网络模型 149 6.4.1 LeNet-5模型 150 6.4.2 Inception-v3模型 156 6.5 卷积神经网络迁移学习 160 6.5.1 迁移学习介绍 160 6.5.2 TensorFlow实现迁移学习 161 结 169 第7章 图像数据处理 170 7.1 TFRecord输入数据格式 170 7.1.1 TFRecord格式介绍 171 7.1.2 TFRecord样例程序 171 7.2 图像数据处理 173 7.2.1 TensorFlow图像处理函数 174 7.2.2 图像预处理完整样例 183 7.3 多线程输入数据处理框架 185 7.3.1 队列与多线程 186 7.3.2 输入文件队列 190 7.3.3 组合训练数据(batching) 193 7.3.4 输入数据处理框架 196 结 198 第8章 循环神经网络 200 8.1 循环神经网络简介 200 8.2 长短时记忆网络(LTSM)结构 206 8.3 循环神经网络的变种 212 8.3.1 双向循环神经网络和深层循环神经网络 212 8.3.2 循环神经网络的dropout 214 8.4 循环神经网络样例应用 215 8.4.1 自然语言建模 216 8.4.2 时间序列预测 225 结 230 第9章 TensorBoard可视化 232 9.1 TensorBoard简介 232 9.2 TensorFlow计算图可视化 234 9.2.1 命名空间与TensorBoard图上节点 234 9.2.2 节点信息 241 9.3 监控指标可视化 246 结 252 第10章 TensorFlow计算加速 253 10.1 TensorFlow使用GPU 253 10.2 深度学习训练并行模式 258 10.3 多GPU并行 261 10.4 分布式TensorFlow 268 10.4.1 分布式TensorFlow原理 269 10.4.2 分布式TensorFlow模型训练 272 10.4.3 使用Caicloud运行分布式TensorFlow 282 结 287
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值