1、定理
如果函数 f(x) 满足:
在闭区间[a,b]上连续;
在开区间(a,b)内可导。
那么在(a,b)内至少有一点ξ(a<ξ<b),使等式 :
f(b)-f(a)=f′(ξ)(b-a)
成立,或:
f′(ξ) =(f(b)-f(a)) / (b-a)
或存在0<θ<1,使:
f(b)-f(a) = f′(a+θ(b-a)) (b-a)
成立。
f(b)-f(a)=f′(ξ)(b-a) 也称为拉格朗日中值公式,后面两个式子是其简单变种。
2、几何意义

(f(b)-f(a))/(b-a)是线段AB的斜率,f′(ξ)的值就是AB的斜率,也是点C的切线斜率,表明点C的切线与线段AB平行。
因此拉格朗日中值定理的几何意义为:如果连续曲线y=f(x)的弧AB上除端点外处处有不垂直于x轴的切线,那么弧AB上至少有一点C,使点C处的切线平行于直线弦AB。当f(a)=f(b)的情况下,AB平行于x轴,切线也平行于x轴,此时就是罗尔中值定理的情况,因此罗尔中值定理是拉格朗日中值定理的特例。
之所以先说函数的几何意义,是因为可以用于启发该公式的证明。
拉格朗日中值定理是微分学中的重要定理,它指出在连续且可导的函数上,存在一点的切线斜率等于弧段的平均斜率。这个定理在深度学习中对于理解梯度和优化过程有重要意义。通过构造辅助函数并应用罗尔定理,可以证明该定理,并进一步引出有限增量定理,为处理函数增量提供精确表达式。拉格朗日中值定理的几何意义和推论在实际问题中展现出其价值。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



