题目:
请实现一个函数,用来判断一棵二叉树是不是对称的。如果一棵二叉树和它的镜像一样,那么它是对称的。
例如,二叉树 [1,2,2,3,4,4,3] 是对称的。
1
/ \
2 2
/ \ / \
3 4 4 3
但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的:
1
/ \
2 2
\ \
3 3
示例 1:输入:root = [1,2,2,3,4,4,3] 输出:true
示例 2:输入:root = [1,2,2,null,3,null,3] 输出:false
限制:0 <= 节点个数 <= 1000
解题思路:
首先明确对称二叉树要比较的是哪两个节点,要比较的并不是左右节点。而是根节点的左子树与右子树是不是相互翻转的。所以其实我们要比较的是两个树(这两个树是根节点的左右子树),所以在递归遍历的过程中,也是要同时遍历两棵树。
比较的是两个子树的里侧和外侧的元素是否相等。那么本题只能用‘后序遍历’,因为要通过递归函数的返回值来判断两个子树的内侧节点和外侧节点是否相等。
递归三部曲:
- 确定递归函数的参数和返回值:因为要比较的是根节点的两个子树是否是相互翻转的,进而判断这个树是不是对称树,所以要比较的是两个树,参数自然也是左子树节点和右子树节点。返回值为bool类型。
- 确定终止条件:要比较两个节点数值相不相同,首先明白两个节点为空的情况。否则后续比较数值的时候就会操作空指针。节点为空的情况有(注意比较的其实不是左孩子和右孩子,应为左节点和右节点):(1)左节点为空,右节点不为空,不对称,return false;(2)左不为空,右为空,不对称,return false;(3)左右都为空,对称,return true;(4)排除节点为空的情况后,剩下的是左右节点不为空,那么比较节点数值,不相同就return false。
- 确定单层递归的逻辑:单层递归的逻辑就是处理右节点都不为空,且数值相同的情况。(1)比较二叉树外侧是否对称:传入的是左节点的左孩子,右节点的右孩子;(2)比较内侧是否对称,传入左节点的右孩子,右节点的左孩子。(3)如果左右都对称就return true,否则return false。
代码:
class Solution:
def isSymmetric(self, root: TreeNode) -> bool:
def compare(left,right): #1--参数
if left!=None and right==None:return False #2终止条件
elif left==None and right==None:return True #2终止条件
elif left==None and right!=None:return False #2终止条件
elif left.val!=right.val:return False #2终止条件
outside=compare(left.left,right.right) #3单层递归
inside=compare(left.right,right.left) #3单层递归
isSame=outside and inside #3单层递归
return isSame #1---返回值
if not root:return True
return compare(root.left,root.right)
其中,在‘isSame=outside and inside’在布尔上下文中从左到右演算表达式的值,如果布尔上下文中的所有值都为真,那么 and 返回最后一个值。如果布尔上下文中的某个值为假,则 and 返回第一个假值。