剑指offer38.字符串的排列(DFS+剪枝)

题目:

输入一个字符串,打印出该字符串中字符的所有排列。你可以以任意顺序返回这个字符串数组,但里面不能有重复元素。

示例:     输入:s = "abc"       输出:["abc","acb","bac","bca","cab","cba"]

限制1 <= s 的长度 <= 8

解题思路:

对于一个长度为n的字符串(假设字符互不重复),其排列方案数共有n!种。根据字符串排列的特点,考虑二叉树中深度优先搜索所有排列方案,即通过字符交换,先固定第1位字符(n种情况)、再固定第2位字符(n-1种情况)...最后固定第n位字符(1中情况)

 当字符串存在重复字符时,排列方案中也存在重复的排列方案。为排除重复方案,需在固定某位字符时,保证“每种字符只在此位固定一次”,即遇到重复字符时不交换,直接跳过。从DFS角度看,此操作成为“剪枝”

代码:

class Solution:
    def permutation(self, s: str) -> List[str]:
        c, res = list(s), []
        def dfs(x):  #当前固定位x
            if x == len(c) - 1:   #代表所有位已固定(最后一位只有一种情况),则当前组合c转化为字符串并加入res,并返回
                res.append(''.join(c))   # 添加排列方案
                return
            dic = set()   #初始化一个set,用于排除重复的字符
            for i in range(x, len(c)):  #将第x位字符与i字符分别交换,并进入下层递归
                if c[i] in dic: continue # 重复,因此剪枝
                dic.add(c[i])
                c[i], c[x] = c[x], c[i]  # 交换,将 c[i] 固定在第 x 位
                dfs(x + 1)               # 开启固定第 x + 1 位字符
                c[i], c[x] = c[x], c[i]  # 恢复交换,还原之前的交换
        dfs(0)
        return res

复杂度:

  • 时间复杂度:O(N!N):N为字符串s的长度,时间复杂度和字符串排列的方案数成线性关系,为N!。字符串的拼接操作join()使用O(N)
  • 空间复杂度:O(N^2),全排列的递归深度为N,系统累计使用栈空间大小为O(N),递归中辅助set累计存储的字符数量最多为N+(N-1)+...+2+1=(N+1)N/2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值