自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 [pytorch]K-means算法的实现

K-MEANS算法是输入聚类个数k,以及包含 n个数据对象的数据库,输出满足方差最小标准k个聚类的一种算法。k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。基本步骤(1) 从 n个数据对象任意选择 k 个对象作为初始聚类中心;(2) 根据每个聚类对象的均值(中心对象),计算每个对象与这...

2020-03-29 23:32:44 1999 2

原创 PCA的原理和pytorch实现

PCA的原理和pytorch实现PCA原理简介pytorch实现PCA即主成分分析在数据降维方面有着非常重要的作用,本文简单介绍其原理,并给出pytorch的实现。PCA原理简介PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是...

2020-03-29 23:14:21 4904

原创 [pytorch]数据增强的方式tranforms的使用

[pytorch]数据增强的方式tranforms的使用pytorch为我们提供了非常好的数据增强的包transforms,以下一CIFAR10为例,介绍一下用法:import torchvisionimport torchvision.transforms as transformscifar_norm_mean = (0.49139968, 0.48215827, 0.4465312...

2020-03-29 20:40:24 332

原创 [pytorch]权重初始化方法

[pytorch]权重初始化方法权重初始化的方法封装在torch.nn.init里。具体在使用的时候先初始化层之后直接调,e.g.conv = nn.Conv2d(*args, **kwargs)conv.weight.data.normal_() #w以标准正态分布初始化conv.bias.data.zero_() #偏置以0初始化常数初始化w = torch.empty(3,...

2020-03-29 17:20:00 983

原创 [pytorch]几种optimizer优化器的使用

[pytorch]几种optimizer优化器的使用optimizer的构建梯度更新的过程几种optimizerSGD+momentumAdagradRMSPropAdam梯度下降的方法可以大致分为以下三大类:标准梯度下降方法:先计算所有样本汇总误差,然后根据总误差来更新权重随机梯度下降方法:随机选取一个样本来计算误差,然后更新权重批量梯度下降方法:从总的样本中选取一个b...

2020-03-29 16:27:58 676

原创 [pytorch] pytorch常用normalization函数详解

[pytorch] pytorch常用normalization函数详解BatchNormLayerNormInstanceNormGroupNormNormalization归一化的使用在机器学习的领域中有着及其重要的作用,笔者在以前的项目中发现,有的时候仅仅给过了网络的feature加一层normzalize层,就可以让性能提高几个点,所以在这篇文章里详细介绍一下pytorch官方给出的几个...

2020-03-01 21:33:37 2034

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除