最优化学习笔记——第二章

本文介绍了最优化学习的第二章,主要探讨了对偶问题的定义、对偶定理的应用,以及对偶单纯形法的概述。通过实例展示了如何构造对偶问题,并重点讲解了灵敏度分析的背景及Post-optional分析在参数变化中的作用。
摘要由CSDN通过智能技术生成

最优化学习笔记——第二章


在这里插入图片描述

一、对偶问题

对偶问题定义

在这里插入图片描述
对称性定理:对偶问题的对偶是原问题
在这里插入图片描述
对下面的例子:
添加约束之后,将系数矩阵的专制作为对偶问题的系数矩阵,将maxz的系数1,-1, 5,-7作为对偶问题的Y向量,minf的系数来自于原问题的Y向量
然后引用b),等式的变量没有非负限制(y1)
引用c),对于没有非负限制的x3,x4,对应对偶问题的第三和第四行就是等式约束,其余为Min对应的>=不等式
在这里插入图片描述
更详细的可以参考下面的表格
在这里插入图片描述

对偶定理:

两者可行解是有明显界限区分的,且解集若能相遇即为两者的最优解。
某一方有最优解,则另一方必有可行解
若两者都有可行解,则一定有最优解同时满足解是相通同的
在这里插入图片描述
在这里插入图片描述

对偶单纯形法:这里先略去

二、 灵敏度分析

问题的提出:
在线性规划中,模型的参数可能在一定限度内改变不造成最优解的变化

Post-optional分析):
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>