最优化学习笔记——第二章

一、对偶问题
对偶问题定义

对称性定理:对偶问题的对偶是原问题

对下面的例子:
添加约束之后,将系数矩阵的专制作为对偶问题的系数矩阵,将maxz的系数1,-1, 5,-7作为对偶问题的Y向量,minf的系数来自于原问题的Y向量
然后引用b),等式的变量没有非负限制(y1)
引用c),对于没有非负限制的x3,x4,对应对偶问题的第三和第四行就是等式约束,其余为Min对应的>=不等式

更详细的可以参考下面的表格

对偶定理:
两者可行解是有明显界限区分的,且解集若能相遇即为两者的最优解。
某一方有最优解,则另一方必有可行解
若两者都有可行解,则一定有最优解同时满足解是相通同的


对偶单纯形法:这里先略去
二、 灵敏度分析
问题的提出:
在线性规划中,模型的参数可能在一定限度内改变不造成最优解的变化
Post-optional分析):

本文介绍了最优化学习的第二章,主要探讨了对偶问题的定义、对偶定理的应用,以及对偶单纯形法的概述。通过实例展示了如何构造对偶问题,并重点讲解了灵敏度分析的背景及Post-optional分析在参数变化中的作用。
447

被折叠的 条评论
为什么被折叠?



