第四章 一维搜索
这里写目录标题
近似求解和精确求解
一、缩小区间的搜索
一元函数求极小及线性搜索均为一维搜索。常用于
求:

缩小区间的精确一维搜索
考虑问题§

单谷区间:


不确定区间: [𝛼, 𝛽]含𝜑(𝜆)的最小点,但不知其位置
若对任意𝜆1 , 𝜆2, 𝛼 ≤ 𝜆1 < 𝜆2 ≤ 𝛽满足:
1º若𝜆2 ≤ 𝜆∗,则𝜑(𝜆1) > 𝜑(𝜆2);
2º 若𝜆1 ≥ 𝜆∗,则𝜑(𝜆1) < 𝜑(𝜆2)
则称𝜑(𝜆)在[𝛼, 𝛽] 上强单谷。

若只有当𝜑(𝜆1) ≠ 𝜑(𝜆 ∗ ), 𝜑(𝜆2) ≠ 𝜑(𝜆 ∗ )时,上述1º, 2º 式
才成立,则称φ(λ)在[α, β] 上单谷。

下图的定理比较显而易见,也为缩短区间的算法提供了理论依据:

黄金分割法(0.618 法)
通过上述定理,选二点𝜆 < 𝜇 ,比较𝜱(𝝀) 与 𝜱(𝝁),可去掉[𝛼 , 𝜆]。或者[𝜇 , 𝛽].考虑条件:
1°对称: 𝜆 − 𝛼 = 𝛽 − 𝜇 ……(1)
使“坏”的情况去掉,区间长度不小于“好”的情况
2°保持缩减比: 𝑡 =(保留的区间长度/原区间长度) 不变。
使每次保留下来的节点 𝜆或 𝜇,在下一次的比较中成为一个
相应比例位置的节点

整理后得到: 𝝁 = 𝜶 + 𝒕(𝜷 − 𝜶 ) 𝝀 = 𝜶 + 𝒕(𝝁 − 𝜶 )
结合①式:𝒕𝟐 + 𝒕 − 𝟏 = 𝟎 故 𝒕 ≈ 𝟎. 𝟔𝟏𝟖
注意 上式有 𝒕𝟐 = 𝟏 − 𝒕, 故有:
𝝁 = 𝜶 + 𝒕(𝜷 − 𝜶 ) 𝝀 = 𝜶 + (𝟏 − 𝒕)(𝜷 − 𝜶 )



例题:



中点法(二分法)
设ф (λ)在 [α ,β]上可微,且当导数为零时是解。取λ=(α+β)/2,那么
ф′ (λ)=0 时, λ为最小点, λ= λ*
ф′ (λ)>0 时, λ在上升段, λ* < λ,去掉[λ,β] ;
ф′ (λ)<0 时, λ在下降段, λ* > λ,去掉[α ,λ] ;
进退法求初始不确定区间
找三点使两端点的函数值大于中间点的函数值
思路:任取λ0,步长δ >0,取λ1=λ0 + δ
1°若𝜱(𝝀𝟎) < 𝜱(𝝀𝟏), 令δ=2 δ(步长加倍),λ2=λ0 - δ , 若𝜱 𝝀𝟐 < 𝜱(𝝀𝟎),则令𝜆1 = 𝜆0 ,𝜆0 = 𝜆2 ,重复 1° 若𝜱 𝝀𝟐 > 𝜱(𝝀𝟎),则停,𝛼 = 𝜆2,𝛽 = 𝜆1

2°若𝜱 𝝀𝟎 > 𝜱(𝝀𝟏)令𝛿 = 2 𝛿, 𝜆2 = 𝜆1 + 𝛿 , 若𝜱 𝝀𝟐 < 𝜱(𝝀𝟏),则令𝜆0 = 𝜆1,𝜆1 = 𝜆2 ,重复 2° 若𝜱 𝝀𝟐 > 𝜱(𝝀𝟏),则停,𝛼 = 𝜆0 ,𝛽 = 𝜆2

注意:
𝜹 选择要适当。(太大含多个单峰区间,太小迭代次数增
加);
𝜱 𝝀 单调时无结果,(加迭代次数限制);
可与中点法结合寻找单调区间(思考)
二、Newton和插值法
插值法利用插值函数逼近所需求解的目标函数,把插值函数的极小点作为迭代点。常见的有三点二次插值,两点二次插值和三次插值多项式
1、 Newton法
其实就是利用了拉格朗日公式,一二阶导数,近似的梯度下降



例题:


2、 插值法
- 基本的思想就是拟合一个多元n次方程,按照参数的需求去选择点数,若点数不够, 可以用导数凑方程
用ф(λ)在2 或3 个点的函数值或导数值,构造2 次或3次多
项式作为ф(λ)的近似值,以这多项式的极小点为新的迭代点
3点2次,2点2次,4点3次,3点3次,2点3次等
3点2次:
取λ 1,λ 2,λ3,求出ф(λ1), ф(λ2), ф(λ3)

上述及得4个已知点,设为𝝀𝟎, 𝝀, 𝝀𝟏, 𝝀𝟐,然后从中舍去一个,保证最小点在区间内
两点两次:

三次插值:四个参数
因此需要四个条件:可以是四个点,3点加一点的导数值
,2点加两点导数值
3928

被折叠的 条评论
为什么被折叠?



