推荐算法笔记
文章平均质量分 88
正经放
这个作者很懒,什么都没留下…
展开
-
Wide and Deep
W and D文章目录W and D一、点击率预估二、为什么提出三、 Wide & Deep模型的“记忆能力”与“泛化能力”四、操作流程五、优缺点对比一、点击率预估点击率预估是对每次广告点击情况作出预测,可以输出点击或者不点击,也可以输出该次点击的概率,后者有时候也称为pClick.通过上述点击率预估的基本概念,我们会发现其实点击率预估问题就是一个二分类的问题,在机器学习中可以使用逻辑回归作为模型的输出,其输出的就是一个概率值,我们可以将机器学习输出的这个概率值认为是某个用户点击某个广告的原创 2022-05-07 09:44:42 · 534 阅读 · 0 评论 -
GNN在推荐系统的应用——>GC-MC与STAR-GCN
GNN ——> 推荐系统(两个算法)文章目录GNN ——> 推荐系统(两个算法)前言一、GC-MC1、总体结构2、Graph Encoder部分3、Graph Decoder部分4、损失函数5、实验结果6、不足二、STAR-GCN1、总体架构(比较)2、Transductive 和 Inductive(归纳和直推)如何实现直推?——mask3、LOSS部分4、leakage Issue的避免5、实验结果前言部分资源来自于Youtube一、GC-MC1、总体结构首先进行one-ho原创 2022-04-13 21:34:41 · 2959 阅读 · 0 评论 -
《社交电商中的分享推荐研究》论文阅读笔记
A Study of Share Recommendation in Social E-commerce《社交电商中的分享推荐研究》该论文收录于35th AAAI 2021: Virtual EventCCF A 类会议文章目录A Study of Share Recommendation in Social E-commerce一、摘要二、简介分享推荐需要解决以下问题:1、丰富的异构信息2、复杂的三元交互3、非对称分享行为本文贡献三、正文部分HGSRec模型1、初始化节点向量2、三方异构图神经网原创 2022-04-06 18:56:41 · 1535 阅读 · 0 评论 -
个性召回算法 LFM
个性召回算法 LFM文章目录个性召回算法 LFM前言什么是LFM算法1. 算法框架2. 与CF的比较:LFM代码记录1. 数据2. 训练环节前言学习整理笔记,内容所有权不在我什么是LFM算法LFM算法输入的是USER对ITEM的点击展示矩阵矩阵,和想要输出的用户与商品向量维度返回:每一个user的向量表示和每一个item的向量表示应用场景:1.完成user的item推荐列表,toplike2.完成item的相似度列表,topsim3.完成item之间隐藏topic的挖掘,topic原创 2022-03-31 22:33:25 · 287 阅读 · 0 评论 -
推荐系统初等知识笔记
文章目录前言一: 推荐系统简介二: 推荐系统的架构三: 推荐算法四: 推荐系统的评估五: 推荐系统的冷启动问题六 : LFM七:基于内容的推荐算法用户的标签来自于哪儿八: TF-IDF前言知识内容不是我个人所有,是看课程视频整理截图所得,为个人学习所用一: 推荐系统简介推荐系统是不需要⽤户提供明确的需求,通过分析⽤户的历史⾏为给⽤户的兴趣进⾏建模,从⽽主动给⽤户推荐能够满⾜他们兴趣和需求的信息。是一个概率的问题。而搜索引擎是在有明确需求的前提下进行内容查询推荐系统有长尾效应,因为为了最大化利益原创 2022-03-26 21:12:12 · 2087 阅读 · 0 评论
分享