正经放
码龄6年
关注
提问 私信
  • 博客:48,111
    社区:146
    48,257
    总访问量
  • 26
    原创
  • 790,562
    排名
  • 20
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:辽宁省
  • 加入CSDN时间: 2018-11-28
博客简介:

weixin_43845522的博客

查看详细资料
个人成就
  • 获得23次点赞
  • 内容获得7次评论
  • 获得127次收藏
创作历程
  • 26篇
    2022年
成就勋章
TA的专栏
  • C++
    1篇
  • DGL阅读笔记
    3篇
  • 推荐算法笔记
    5篇
  • 面试知识点
    2篇
  • 阅读笔记
  • 因果推断
    1篇
  • GNN
    1篇
  • 最优化
    3篇
  • 计算机网络
    9篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    机器学习人工智能知识图谱
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

C++基础笔记

因为工作需求学习C++,内容正在不断更新,内容主要来自于网上的视频课
原创
发布博客 2022.06.24 ·
965 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

Wide and Deep

W and D文章目录W and D一、点击率预估二、为什么提出三、 Wide & Deep模型的“记忆能力”与“泛化能力”四、操作流程五、优缺点对比一、点击率预估点击率预估是对每次广告点击情况作出预测,可以输出点击或者不点击,也可以输出该次点击的概率,后者有时候也称为pClick.通过上述点击率预估的基本概念,我们会发现其实点击率预估问题就是一个二分类的问题,在机器学习中可以使用逻辑回归作为模型的输出,其输出的就是一个概率值,我们可以将机器学习输出的这个概率值认为是某个用户点击某个广告的
原创
发布博客 2022.05.07 ·
534 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

力扣做题笔记

力扣做题笔记文章目录力扣做题笔记前言一、Easy240. 搜索二维矩阵215. 三数之和215. 数组中的第K个最大元素139. 单词拆分206. 反转链表(easy)11. 盛最多水的容器(medium)19. 删除链表的倒数第 N 个结点20. 有效的括号21. 合并两个有序链表22. 括号生成二、Medium31. 下一个排列33. 搜索旋转排序数组(面试搜狐的时候考过)34. 在排序数组中查找元素的第一个和最后一个位置39. 组合总和 *46. 全排列 *48. 旋转图像 *49. 字母异位词分组
原创
发布博客 2022.05.06 ·
1580 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

深度学习概念总结

深度学习概念总结文章目录深度学习概念总结Dropout思想相关问题为何Dropout能够解决过拟合Dropout和Bagging有何不同Dropout思想在每次训练过程中随机忽略一些神经元,正向传播对于下游神经元的贡献暂时消失,反向传播时也不会有任何权重的更新。简单来说,Droopout通过参数共享,提供了一种廉价的Bagging集成近似,dropout策略相当于继承了包括所有从基础网络除去部分单元后形成的子网络。相关问题为何Dropout能够解决过拟合“取平均”:dropout掉不同的隐
原创
发布博客 2022.05.05 ·
314 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

《无监督因果特征提取高速列车故障检测》论文阅读

论文阅读《High-speed train fault detection with unsupervised causality-based feature extraction methods》文章目录论文阅读摘要一、相关内容项目研究背景:FDD先前技术:维度困难因果使用进展二、高维监测变量特征提取方法1、因果网络的构建1.1 数据离散化1.2 监测变量因果网络的构建2、邻接矩阵的构造2.1 因果邻接矩阵2.2 全因果邻接矩阵3、特征向量提取和数据重建3.1 Causal-FE 13.2 Caus
原创
发布博客 2022.05.02 ·
1182 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

StemGNN

StemGNN文章目录StemGNN一、项目背景和概念介绍动机:二、应用场景2.1 问题定义三、前提知识自注意力机制四、 项目概念4.1 关于数据4.2 模型架构4.3 自定义参数五、 代码部分总括1、main.py(控制调用顺序和主体框架)2、handler.py(训练、测试、验证等关键环节)(1)训练函数(2)验证函数(3)测试函数(4)(5)保存模型(6)加载模型3、forecast_dataloader.py(数据集处理)(1)ForecastDataset类4、base_model.py(模型设
原创
发布博客 2022.04.23 ·
2160 阅读 ·
7 点赞 ·
1 评论 ·
34 收藏

GNN在推荐系统的应用——>GC-MC与STAR-GCN

GNN ——> 推荐系统(两个算法)文章目录GNN ——> 推荐系统(两个算法)前言一、GC-MC1、总体结构2、Graph Encoder部分3、Graph Decoder部分4、损失函数5、实验结果6、不足二、STAR-GCN1、总体架构(比较)2、Transductive 和 Inductive(归纳和直推)如何实现直推?——mask3、LOSS部分4、leakage Issue的避免5、实验结果前言部分资源来自于Youtube一、GC-MC1、总体结构首先进行one-ho
原创
发布博客 2022.04.13 ·
2960 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

《社交电商中的分享推荐研究》论文阅读笔记

A Study of Share Recommendation in Social E-commerce《社交电商中的分享推荐研究》该论文收录于35th AAAI 2021: Virtual EventCCF A 类会议文章目录A Study of Share Recommendation in Social E-commerce一、摘要二、简介分享推荐需要解决以下问题:1、丰富的异构信息2、复杂的三元交互3、非对称分享行为本文贡献三、正文部分HGSRec模型1、初始化节点向量2、三方异构图神经网
原创
发布博客 2022.04.06 ·
1536 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

最优化学习笔记——第四章

第四章 一维搜索这里写目录标题第四章 一维搜索一、缩小区间的搜索缩小区间的精确一维搜索黄金分割法(0.618 法)中点法(二分法)进退法求初始不确定区间二、Newton和插值法1、 Newton法2、 插值法基本的思想就是拟合一个多元n次方程,按照参数的需求去选择点数,若点数不够, 可以用导数凑方程以3点2次为例:两点两次:三次插值:四个参数近似求解和精确求解一、缩小区间的搜索一元函数求极小及线性搜索均为一维搜索。常用于求:缩小区间的精确一维搜索考虑问题§不确定区间: [𝛼, 𝛽]含𝜑(
原创
发布博客 2022.04.05 ·
1153 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏

最优化学习笔记——第三章

第三章——非线性规划的数学模型这里写目录标题第三章——非线性规划的数学模型前言一、 数学模型二、 直观理解三、无约束问题的最优性条件四、 凸的无约束问题的最优性条件五、基本思路最优化方法通常采用迭代方法(iterative)求解最优化方法的基本结构,给定初始点x^(0)下降方向:计算的终止条件(Termination criterion)与收敛速度(Convergence rate)二次终止性注:47页之后的没有看前言非线性规划比线性规划更困难,没有统一的数学模型,有自己特定的适用范围,目前还没有通用
原创
发布博客 2022.04.05 ·
4097 阅读 ·
1 点赞 ·
0 评论 ·
16 收藏

最优化学习笔记——第二章

最优化学习笔记——第二章文章目录最优化学习笔记——第二章一、对偶问题对偶问题定义对偶定理:对偶单纯形法:这里先略去二、 灵敏度分析一、对偶问题对偶问题定义对称性定理:对偶问题的对偶是原问题对下面的例子:添加约束之后,将系数矩阵的专制作为对偶问题的系数矩阵,将maxz的系数1,-1, 5,-7作为对偶问题的Y向量,minf的系数来自于原问题的Y向量然后引用b),等式的变量没有非负限制(y1)引用c),对于没有非负限制的x3,x4,对应对偶问题的第三和第四行就是等式约束,其余为Min对应的
原创
发布博客 2022.04.05 ·
463 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

复习概念总结(机器学习\深度学习)

复习概念总结(机器学习\神经网络)对随时遇到的算法相关知识问题进行记录,后期考虑分门别类,以供自己复习,内容不断更新文章目录复习概念总结(机器学习\神经网络)一、基础概念1、 特征学习2、 BN 与 Dropout3、 防止过拟合4、 梯度下降例题5、 Attention-based Model二、 损失与优化1、信息增益2、 AdaGrad3、 交叉熵损失sigmoid_cross_entropy三、 算法原理1、 Adaboost2、 ResNet3、 RNN一、基础概念1、 特征学习需要利
原创
发布博客 2022.04.04 ·
1218 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

个性召回算法 LFM

个性召回算法 LFM文章目录个性召回算法 LFM前言什么是LFM算法1. 算法框架2. 与CF的比较:LFM代码记录1. 数据2. 训练环节前言学习整理笔记,内容所有权不在我什么是LFM算法LFM算法输入的是USER对ITEM的点击展示矩阵矩阵,和想要输出的用户与商品向量维度返回:每一个user的向量表示和每一个item的向量表示应用场景:1.完成user的item推荐列表,toplike2.完成item的相似度列表,topsim3.完成item之间隐藏topic的挖掘,topic
原创
发布博客 2022.03.31 ·
288 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

dgl源码阅读笔记(3)——DeepWalk

dgl源码阅读笔记(3)——DeepWalk图神经网络开源库dgl阅读笔记文章目录dgl源码阅读笔记(3)——DeepWalk图神经网络开源库dgl阅读笔记@[TOC](文章目录)前言一、DeepWalk简单回顾二、浏览代码类1.class DeepwalkTrainer2.class SkipGramModel.__init__()def init_emb2pos_indexdef init_emb2neg_indexclass SkipGramModel的其他函数def fast_learn三
原创
发布博客 2022.03.29 ·
1215 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

计算机网络笔记–9 物 理 层

计算机网络笔记–9 物 理 层文章目录计算机网络笔记–9 物 理 层前言数据通信系统物理介质:信道与信道容量基带传输系统(短距离)多进制数字调制前言这是学习计算机网络课程时记录的笔记,里面大部分内容来源于哈尔滨工业大学李全龙老师的《计算机网络》mooc,加上我个人的理解整理出的内容。数据通信系统伴随着计算机技术产生,二进制数据应用广泛信源:把信息转换成信号(计算机)发送设备:将信源产生的信号进行适当的变换装置,使之适合在信道中传输主要包括编码和调制信道:信号传输的通路(物理介质)噪声
原创
发布博客 2022.03.29 ·
1590 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

计算机网络笔记–8 数据链路层

计算机网络笔记–8 数据链路层文章目录计算机网络笔记–8 数据链路层前言5.1数据链路层服务5.2差错编码5.3多路访问协议5.5 以太网(ETHERNET)5.6 PPP协议5.7 802.11无线局域网前言这是学习计算机网络课程时记录的笔记,里面大部分内容来源于哈尔滨工业大学李全龙老师的《计算机网络》mooc,加上我个人的理解整理出的内容。5.1数据链路层服务术语:主机和路由器——>结点连接相邻结点的通信信道——>链路:有线链路,无线链路,局域网链路层(第二层)数据分组
原创
发布博客 2022.03.29 ·
5536 阅读 ·
0 点赞 ·
1 评论 ·
4 收藏

计算机网络笔记–6 网络层(中)

计算机网络笔记–5 网络层(中)文章目录计算机网络笔记–5 网络层(中)前言4.4 Cidr与路由聚合4.5 DHCP协议![在这里插入图片描述](https://img-blog.csdnimg.cn/9098e71df34f40279fd10f477ef59f53.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5q2j57uP5pS-,size_20,color_FFFFFF,t_70,g_se
原创
发布博客 2022.03.29 ·
2895 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

计算机网络笔记–7 网络层(下)

计算机网络笔记–5 网络层(中)文章目录计算机网络笔记–5 网络层(中)前言路由算法和Internet路由4.9路由算法4.10 Internet 路由前言这是学习计算机网络课程时记录的笔记,里面大部分内容来源于哈尔滨工业大学李全龙老师的《计算机网络》mooc,加上我个人的理解整理出的内容。路由算法和Internet路由4.9路由算法将网络抽象为图每段链路的权值可以是1,也可以是带宽的倒数或者拥塞程度等,总的来说是权值越小对通信越有利关键问题:源到目的的最小花费是多少?(最短路径问题)
原创
发布博客 2022.03.29 ·
736 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

计算机网络笔记–5 网络层(上)

计算机网络笔记–5 网络层(上)文章目录计算机网络笔记–5 网络层(上)前言一、4.1网络层:从发送主机向接受主机发送数据段4.2虚电路网络和数据报网络(典型的分组交换网络)4.3IPv4协议前言这是学习计算机网络课程时记录的笔记,里面大部分内容来源于哈尔滨工业大学李全龙老师的《计算机网络》mooc,加上我个人的理解整理出的内容。一、4.1网络层:从发送主机向接受主机发送数据段发送主机:将数据段封装到数据报中接受主机:向传输层交付数据段每个主机和路由器都运行网络层协议路由器检验所有穿越它
原创
发布博客 2022.03.29 ·
3460 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

计算机网络笔记--4 传 输 层(下)

计算机网络笔记–4 传 输 层(下)文章目录计算机网络笔记--4 传 输 层(下)前言3.6 TCP协议3.7拥塞控制原理前言这是学习计算机网络课程时记录的笔记,里面大部分内容来源于哈尔滨工业大学李全龙老师的《计算机网络》mooc,加上我个人的理解整理出的内容。3.6 TCP协议点对点:一个发送方,一个接收方提供可靠的、按序的字节流流水线机制:TCP拥塞控制和流量控制,设置窗口尺寸发送方/接收方缓存全双工:同一连接中能够双向传输面向连接:通信双方在发送数据之前必须建立连接连接状态
原创
发布博客 2022.03.28 ·
398 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏
加载更多