Python 参数解析工具 ArgumentParser

ArgumentParser

通过命令行运行Python脚本时,可以通过ArgumentParser来高效地接受并解析命令行参数。
ArgumentParser说明

使用argparse 配置命令行参数

  1. 新建 ArgumentParser()类对象
import argparser
parser = argparser.ArgumentParser(description='Process some integers.')

将命令行解析成 Python 数据类型所需的全部信息

  1. 调用 add_argument() 方法添加参数
parser.add_argument(name or flags...[, action][, nargs][, const][, default][, type][, choices][, required][, help][, metavar][, dest])
  • name or flags - 一个命名或者一个选项字符串的列表,例如 foo 或 -f, --foo。
  • action - 当参数在命令行中出现时使用的动作基本类型。
  • nargs - 命令行参数应当消耗的数目。
  • const - 被一些 action 和 nargs 选择所需求的常数。
  • default - 当参数未在命令行中出现时使用的值。
  • type - 命令行参数应当被转换成的类型。
  • choices - 可用的参数的容器。
  • required - 此命令行选项是否可省略 (仅选项可用)。
  • help - 一个此选项作用的简单描述。
  • metavar - 在使用方法消息中使用的参数值示例。
  • dest - 被添加到 parse_args() 所返回对象上的属性名。
  1. 使用 parse_args() 解析添加的参数
args = parser.parse_args()
请问各位大神,关于argparse模块,这段代码(argparse.ArgumentParser与add_argument)的具体作用,万分感谢! ```python parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') # 调用add_argument()方法将命令行中的参数保存到ArgumentParser对象中 parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--world-size', default=1, type=int, help='number of distributed processes') parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='gloo', type=str, help='distributed backend') ```
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页