数学建模——蚁群算法(Ant Colony Algorithm, ACA)

本文深入探讨蚁群算法(ACA),一种受蚂蚁觅食行为启发的优化算法,适用于寻找图中优化路径。文章详细介绍了算法原理、特点及在旅行商问题(TSP)中的应用,包括参数初始化、信息素更新等关键步骤,并提供了MATLAB实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.什么是蚁群算法?

1.1 算法概述

蚁群算法(Ant Colony Algorithm, ACA)由Marco Dorigo于1992年在他的博士论文中首次提出。是一种灵感来源于蚂蚁在寻找食物过程中发现路径的行为,用来在图中寻找优化路径的算法。

生物现象由来

蚁群系统(Ant System(AS)或Ant Colony System(ACS))是由意大利学者Dorigo、Maniezzo等人于20世纪90年代首先提出来的。他们在研究蚂蚁觅食的过程中,发现蚁群整体会体现一些智能的行为,例如蚁群可以在不同的环境下,寻找最短到达食物源的路径。后经进一步研究发现,这是因为蚂蚁会在其经过的路径上释放一种可以称之为“信息素(pheromone)”的物质,蚁群内的蚂蚁对“信息素”具有感知能力,其中信息素浓度与路径长度成反比,它们会沿着“信息素”浓度较高路径行走,而每只路过的蚂蚁都会在路上留下“信息素”,这就形成一种类似正反馈的机制,这样经过一段时间后,整个蚁群就会沿着最短路径到达食物源了。

行为特征

• 蚂蚁在寻找食物源时,会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。信息素浓度的大小表征路径的远近,信息素浓度越高,表示对应的路径距离越短。

• 通常,蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放 一定量的信息素,以增强该条路径上的信息素浓度,这样,会形成一个 正反馈。最终,蚂蚁能够找到一条从巢穴到食物源的最佳路径,即距离最短。

• 生物学家同时发现, 路径上的信息素浓度会随着时间的推进而逐渐衰减

• 将蚁群算法应用于解决优化问题,其基本思路为:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。路径较短的蚂蚁释放的信息素量较多,随着时间的推进,较短的路径上累积的信息素浓度逐渐增高,选择该路径的蚂蚁个数也愈来愈多。最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。

类比GA(遗传算法)的交叉、选择、变异,PSO(粒子群算法)的个体、群体极值优化,蚁群算法也有自己的优化策略:正反馈的信息机制、信息素浓度的更新、蚂蚁对能够访问的路径的筛选。

由上述蚂蚁找食物模式演变来的算法,即是蚁群算法。这种算法具有分布计算、信息正反馈和启发式搜索的特征,本质上是进化算法中的一种启发式全局优化算法

蚁群算法的应用

蚁群算法应用广泛,如旅行商问题(traveling salesman problem,简称TSP)、指派问题、Job-shop调度问题、车辆路径问题(vehicle routing problem)、图着色问题(graph coloring problem)和网络路由问题(network routing problem)等等。

​ 最近几年,该算法在网络路由中的应用受到越来越多学者的关注,并提出了一些新的基于蚂蚁算法的路由算法。同传统的路由算法相比较,该算法在网络路由中具有信息分布式性、动态性、随机性和异步性等特点,而这些特点正好能满足网络路由的需要。

1.2 数学原理

在这里插入图片描述

算法特点

其原理是一种正反馈机制或者称为增强型学习系统;它通过最优路径上蚂蚁数量增加导致后来蚂蚁选择该路径概率增大达到最终收敛于最优路径。
它是一种通用型随机优化方法,它吸收了蚂蚁的行为特征,它使用人工蚂蚁进行仿真。
它是一种分布式的优化方法,多个体同时进行搜索,具有本质并行性,大大提高了算法的搜索效率。
它是一种启发式算法,不容易陷入局部最优而更容易搜索到全局最优。
它是一种全局优化的方法,不仅可以用于求解单目标优化问题,而且可用于求解多目标优化问题。

关于蚁群算法中释放信息素的特点,定义了三种模型:

第一种模型假设信息素总量一定。信息素浓度和经过路径的长度成反比。

在这里插入图片描述

第二种模型中不使用经过的总路径,而仅仅使用相邻城市的路径长度。

在这里插入图片描述

第三种模型更简单,不管距离长短,释放的信息素都一样。

在这里插入图片描述

本文下面设计的MATLAB程序,以第一种模型为例。
1.3 算法步骤

在这里插入图片描述

ACA算法特点

• 采用正反馈机制,使得搜索过程不断收敛,最终逼近于最优解;

• 每个个体可以通过释放信息素来改变周围的环境,且每个个体能够感知周围环境的实时变化,个体间通过环境(信息素)进行间接地通讯。对比之下,粒子群优化算法中采用局部最优解、全局最优解的广播来实现通讯。

• 搜索过程采用分布式计算方式,多个个体同时进行并行计算,大大提高了算法的计算能力和运行效率;

• 启发式的概率搜索方式,不容易陷入局部最优,易于寻找到全局最优解。

ACA中也采用轮盘赌法,和遗传算法中的启发方法一样,即选择最大的概率那个选项继续前进。

补充:启发式算法

现代启发式算法在优化机制方面存在一定的差异,但在优化流程上却具有较大的相似性,均是一种“邻域搜索”结构。算法都是从一个(一组)初始解出发,在算法的关键参数的控制下通过邻域函数产生若干邻域解,按接受准则(确定性、概率性或混沌方式)更新当前状态,而后按关键参数修改准则调整关键参数。如此重复上述搜索步骤直到满足算法的收敛准则,最终得到问题的优化结果。神经网络、禁忌搜索、模拟退火、和ACA,他们都是启发式的搜索方法,共同的基本要素:(1)随机初始可行解;(2)给定一个评价函数(常常与目标函数值有关);(3)邻域,产生新的可行解;(4)选择和接受解得准则;(5)终止准则。

没有启发的算法就是随机搜索的算法,例如遗传算法。后面的博文中会针对这个问题细讲。

2.算法实例

2.1 旅行商问题(TSP)

Traveling Salesman Problem, TSP 是一个非常经典的问题

在N个城市中各经历一次后再回到出发点,使所经过的路程最短。

若不考虑方向性和周期性,在给定N的条件下,可能存在的闭合路径可达到1/2*N!数量级。当N较大时,枚举法的计算量之大难以想象。。

TSP问题经常被视为验证优化算法性能的一个“金标准”

初始化参数

在计算的开始需要对一些相关的参数进行初始化,如:

蚂蚁数量,既然是蚁群算法,我们肯定要拥有自己的蚁群,由它们对问题的解进行搜索,蚂蚁数量根据经验一般设定为目标数的1.5倍比较好,当蚂蚁数量较多时,所有蚂蚁不容易收敛于一个解,而数量较少时,解的效果可能不会让人满意。

信息素重要程度因子,这个参数是指在蚂蚁移动的过程种产生的信息素对蚂蚁的影响程度,比较好理解,参数越大,蚂蚁选择以前走过路径的可能性越大,会使蚁群更容易的收敛,导致搜索的随机性减弱不利于寻找全局最优解,过小的话就没有了信息素的意义,此参数一般为[0,5]之间比较好。

启发函数重要程度因子,它反映了启发式信息在指导蚁群在路径搜索中的相对重要程度,其大小反映的是蚁群寻优过程种先验性、确定性因素作用的强度。当它越大也是更容易导致收敛过快。一般设置为[0,5]。

信息素挥发因子,它是指信息素的消失水平,它的大小直接关系到算法的全局搜索能力和收敛速度,过大导致信息素挥发过快,一些较好的路径会被排除,过小导致路径残留信息素较多,影响算法效率。一般设置为[0.2,0.5]。

信息素常量,它是指蚂蚁在将路径走完时总共释放的信息素数量,它往往和启发函数一起作用,一般设置在[10,1000],问题规模越大信息素越高较好。

迭代次数,它是指整个蚁群累积搜索了多少次,注意蚁群算法在搜索过程种是整个蚁群同时开始搜索,然后此蚁群循环迭代,此参数一般设置为[100,500]之间,迭代次数设置的过高对算法没有实质意义,一般使其能够收敛即可。

构建模型

我们要知道目标蚂蚁是在固定的解空间内寻找最优解,首先肯定是将蚂蚁放在各个不同的出发点,然后让蚂蚁根据选择依据选择下一个要访问的城市,这个选择依据我们一般使用轮盘赌的方法,其中第i只蚂蚁到第j个城市的概率为:

在这里插入图片描述
a 其中为信息重要程度因子,b 为启发函数重要程度因子,

Tij 为第i个目标到第j个目标直接的信息素

Dij表示第i个目标到第j个目标直接的距离。然后让蚂蚁根据此规则进行搜索即可。

更新信息素

计算各蚂蚁经过的路径长度,记录当前最优解,之后将路径上的信息素进行更新,新的信息素量等于原本就有的信息素挥发后剩下的量加上此蚂蚁走过留下的信息素。在迭代过程中始终对信息素进行累加,以保证最终蚂蚁能够收敛到最优解。其中增加的信息素为:

在这里插入图片描述

Q为之前设置的信息素常量,L为蚂蚁走过总距离的长度,增加的信息素保证增加在此蚂蚁走过的所有路径段上。即假如一只蚂蚁走过的路径为:1->5->3->2->4->1,那么在1-5、5-3、3-2、2-4、4-1之间的路径上都要加上

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.2 实例代码(MATLAB)

%% I. 清空环境变量
clear all
clc
%% II. 导入数据
% load citys_data.mat
 citys = [16.4700   96.1000
     16.4700   94.4400
     20.0900   92.5400
     22.3900   93.3700
     25.2300   97.2400
     22.0000   96.0500
     20.4700   97.0200
     17.2000   96.2900
     16.3000   97.3800
     14.0500   98.1200
     16.5300   97.3800
     21.5200   95.5900
     19.4100   97.1300
     20.0900   92.5500];
%% III. 计算城市间相互距离
n = size(citys,1); % 城市数量
D = zeros(n,n);
for i = 1:n
    for j = 1:n
        if i ~= j
            D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2));
        else
            D(i,j) = 1e-4;  %如果是0会导致矩阵对角线都是0 导致启发函数无穷大 因此取个很小的值    
        end
    end    
end
 
%% IV. 初始化参数
m = 50;                              % 蚂蚁数量
alpha = 1;                           % 信息素重要程度因子
beta = 5;                            % 启发函数重要程度因子
rho = 0.1;                           % 信息素挥发因子
Q = 1;                               % 常系数
Eta = 1./D;                          % 启发函数
Tau = ones(n,n);                     % 信息素矩阵
Table = zeros(m,n);                  % 路径记录表,每一行代表一个蚂蚁走过的路径
iter = 1;                            % 迭代次数初值
iter_max = 200;                      % 最大迭代次数 
Route_best = zeros(iter_max,n);      % 各代最佳路径       
Length_best = zeros(iter_max,1);     % 各代最佳路径的长度  
Length_ave = zeros(iter_max,1);      % 各代路径的平均长度  
 
%% V. 迭代寻找最佳路径
while iter <= iter_max
     % 随机产生各个蚂蚁的起点城市
      start = zeros(m,1);
      for i = 1:m
          temp = randperm(n);
          start(i) = temp(1);
      end
      Table(:,1) = start; 
      citys_index = 1:n;
      % 逐个蚂蚁路径选择
      for i = 1:m
          % 逐个城市路径选择
         for j = 2:n
             tabu = Table(i,1:(j - 1));           % 已访问的城市集合(禁忌表)
             allow_index = ~ismember(citys_index,tabu);
             allow = citys_index(allow_index);  % 待访问的城市集合
             P = allow;
             % 计算城市间转移概率
             for k = 1:length(allow)
                 P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta;
             end
             P = P/sum(P);
             % 轮盘赌法选择下一个访问城市
             Pc = cumsum(P);     
            target_index = find(Pc >= rand); 
            target = allow(target_index(1));
            Table(i,j) = target;
         end
      end
      % 计算各个蚂蚁的路径距离
      Length = zeros(m,1);
      for i = 1:m
          Route = Table(i,:);
          for j = 1:(n - 1)
              Length(i) = Length(i) + D(Route(j),Route(j + 1));
          end
          Length(i) = Length(i) + D(Route(n),Route(1));
      end
      % 计算最短路径距离及平均距离
      if iter == 1
          [min_Length,min_index] = min(Length);
          Length_best(iter) = min_Length;  
          Length_ave(iter) = mean(Length);
          Route_best(iter,:) = Table(min_index,:);
      else
          [min_Length,min_index] = min(Length);
          Length_best(iter) = min(Length_best(iter - 1),min_Length);
          Length_ave(iter) = mean(Length);
          if Length_best(iter) == min_Length
              Route_best(iter,:) = Table(min_index,:);
          else
              Route_best(iter,:) = Route_best((iter-1),:);
          end
      end
      % 更新信息素
      Delta_Tau = zeros(n,n);
      % 逐个蚂蚁计算
      for i = 1:m
          % 逐个城市计算
          for j = 1:(n - 1)
              Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i);
          end
          Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i);
      end
      Tau = (1-rho) * Tau + Delta_Tau;
    % 迭代次数加1,清空路径记录表
    iter = iter + 1;
    Table = zeros(m,n);
end
 
%% VI. 结果显示
[Shortest_Length,index] = min(Length_best);
Shortest_Route = Route_best(index,:);
disp(['最短距离:' num2str(Shortest_Length)]);
disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);
%% VII. 绘图
figure(1)
plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...
     [citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');
grid on
for i = 1:size(citys,1)
    text(citys(i,1),citys(i,2),['   ' num2str(i)]);
end
text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),'       起点');
text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),'       终点');
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])
figure(2)
plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:')
legend('最短距离','平均距离')
xlabel('迭代次数')
ylabel('距离')
title('各代最短距离与平均距离对比')

2.3 结果展示

在这里插入图片描述

参考博客:

https://www.jianshu.com/p/e6a20de60797

标题——作者——出处 基于蚁群优化算法递归神经网络的短期负荷预测 蚁群算法的小改进 基于蚁群算法的无人机任务规划 多态蚁群算法 MCM基板互连测试的单探针路径优化研究 改进的增强型蚁群算法 基于云模型理论的蚁群算法改进研究 基于禁忌搜索与蚁群最优结合算法的配电网规划 自适应蚁群算法在序列比对中的应用 基于蚁群算法的QoS多播路由优化算法 多目标优化问题的蚁群算法研究 多线程蚁群算法及其在最短路问题上的应用研究 改进的蚁群算法在2D HP模型中的应用 制造系统通用作业计划与蚁群算法优化 基于混合行为蚁群算法的研究 火力优化分配问题的小生境遗传蚂蚁算法 基于蚁群算法的对等网模拟器的设计与实现 基于粗粒度模型的蚁群优化并行算法 动态跃迁转移蚁群算法 基于人工免疫算法蚁群算法求解旅行商问题 基于信息素异步更新的蚁群算法 用于连续函数优化的蚁群算法 求解复杂多阶段决策问题的动态窗口蚁群优化算法 蚁群算法在铸造生产配料优化中的应用 多阶段输电网络最优规划的并行蚁群算法 求解旅行商问题的混合粒子群优化算法 微粒群优化算法研究现状及其进展 随机摄动蚁群算法的收敛性及其数值特性分析 广义蚁群与粒子群结合算法在电力系统经济负荷分配中的应用 改进的蚁群算法及其在TSP中的应用研究 蚁群算法的全局收敛性研究及改进 房地产开发项目投资组合优化的改进蚁群算法 一种改进的蚁群算法用于灰色约束非线性规划问题求解 一种自适应蚁群算法及其仿真研究 一种动态自适应蚁群算法 蚂蚁群落优化算法在蛋白质折叠二维亲-疏水格点模型中的应用 用改进蚁群算法求解函数优化问题 连续优化问题的蚁群算法研究进展 蚁群算法概述 Ant colony system algorithm for the optimization of beer fermentation control 蚁群算法在K—TSP问题中的应用 Parallel ant colony algorithm and its application in the capacitated lot sizing problem for an agile supply chain 基于遗传蚁群算法的机器人全局路径规划研究 改进的蚁群算法在矿山物流配送路径优化中的研究 基于蚁群算法的配电网络综合优化方法 基于蚁群算法的分类规则挖掘算法 蚁群算法在连续性空间优化问题中的应用 蚁群算法在矿井通风系统优化设计中的应用 基于蚁群算法的液压土锚钻机动力头优化设计 改进蚁群算法设计拉式膜片弹簧 计算机科学技术 基本蚁群算法及其改进 TSP改进算法及在PCB数控加工刀具轨迹中的应用 可靠性优化的蚁群算法 对一类带聚类特征TSP问题的蚁群算法求解 蚁群算法理论及应用研究的进展 基于二进制编码的蚁群优化算法及其收敛性分析 蚁群算法的理论及其应用 基于蚁群行为仿真的影像纹理分类 启发式蚁群算法及其在高填石路堤稳定性分析中的应用 蚁群算法的研究现状 一种快速全局优化的改进蚁群算法及仿真 聚类问题的蚁群算法 蚁群最优化——模型、算法及应用综述 基于信息熵的改进蚁群算法及其应用 机载公共设备综合管理系统任务分配算法研究 基于改进蚁群算法的飞机低空突防航路规划 利用信息量留存的蚁群遗传算法 An Improved Heuristic Ant-Clustering Algorithm 改进型蚁群算法在内燃机径向滑动轴承优化设计中的应用 基于蚁群算法的PID参数优化 基于蚁群算法的复杂系统多故障状态的决策 蚁群算法在数据挖掘中的应用研究 基于蚁群算法的基因联接学习遗传算法 基于细粒度模型的并行蚁群优化算法 Binary-Coding-Based Ant Colony Optimization and Its Convergence 运载火箭控制系统漏电故障诊断研究 混沌扰动启发式蚁群算法及其在边坡非圆弧临界滑动面搜索中的应用 蚁群算法原理的仿真研究 Hopfield neural network based on ant system 蚁群算法及其实现方法研究 分层实体制造激光头切割路径的建模与优化 配送网络规划蚁群算法 基于蚁群算法的城域交通控制实时滚动优化 基于蚁群算法的复合形法及其在边坡稳定分析中的应用 Ant Colony Algorithm for Solving QoS Routing Problem 多产品间歇过程调度问题的建模与优化 基于蚁群算法的两地之间的最佳路径选择 蚁群算法求解问题时易产生的误区及对策 用双向收敛蚁群算法解作业车间调度问题 物流配送路径安排问题的混合蚁群算法 求解TSP问题的模式学习并行蚁群算法 基于蚁群算法的三维空间机器人路径规划 蚁群优化算法及其应用 蚁群算法不确定性分析 一种求解TSP问题的相遇蚁群算法 基于蚁群优化算法的彩色图像颜色聚类的研究 钣金件数控激光切割割嘴路径的优化 基于蚁群算法的图像分割方法 一种基于蚁群算法的聚类组合方法 圆排列问题的蚁群模拟退火算法 智能混合优化策略及其在流水作业调度中的应用 蚁群算法在QoS网络路由中的应用 一种改进的自适应路由算法 基于蚁群算法的煤炭运输优化方法 基于蚁群智能和支持向量机的人脸性别分类方法 蚁群算法在啤酒发酵控制优化中的应用 一种基于时延信息的多QoS快速自适应路由算法 蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例 基于人工蚁群优化的矢量量化码书设计算法 具有自适应杂交特征的蚁群算法 蚁群算法在原料矿粉混匀优化中的应用 基于多Agent的蚁群算法在车间动态调度中的应用研究 用蚁群优化算法求解中国旅行商问题 蚁群算法在婴儿营养米粉配方中的应用 蚁群算法在机械优化设计中的应用 蚁群优化算法的研究现状及研究展望 蚁群优化算法及其应用研究进展 蚁群算法的理论与应用 简单蚁群算法的仿真分析 一种改进的蚁群算法求解最短路径问题 基于模式求解旅行商问题的蚁群算法 一种求解TSP的混合型蚁群算法 基于MATLAB的改进型基本蚁群算法 动态蚁群算法求解TSP问题 用蚁群算法求解类TSP问题的研究 蚁群算法求解连续空间优化问题的一种方法 用混合型蚂蚁群算法求解TSP问题 求解复杂TSP问题的随机扰动蚁群算法 基于蚁群算法的中国旅行商问题满意解 蚁群算法的研究现状和应用及蚂蚁智能体的硬件实现 蚁群算法概述 蚁群算法的研究现状及其展望 基于蚁群算法的配电网网架优化规划方法 用于一般函数优化的蚁群算法 协同模型与遗传算法的集成 基于蚁群最优的输电网络扩展规划 自适应蚁群算法 凸整数规划问题的混合蚁群算法 一种新的进化算法—蛟群算法 基于协同工作方式的一种蚁群布线系统
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

何为xl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值