数据分析见解-数据异常波动 指标波动多大才算是异常?指标数据波动,是各种业务场景下都会遇见的情况,如每日GMV、每日订单量等,都是在不断变化的。大多数情况下,变化是“正常”的波动,但有一些波动,源于突然发生的外部原因或其他未被预期的因素,导致其表现出不同于正常模式的异常状态。若能准确地识别异常波动,从而做出波动预警,并及时应对,就能一定程度上保证所关心的业务场景系统的整体稳定性。波动类型数据+时间构成了波动的两个基本属性。(1)一次性波动:偶发的、突然性的波动。一般是由于短期、突发的事件而影响的指标的波动,比如说某头部主播在某
Python常用统计分布【numpy、scipy.stats、statsmodels.graphics.api、matplotlib】 import numpy as npimport scipy.stats as ss#正态分布检验norm_dist=ss.norm.rvs(size=20) #生成20个符合正态分布数据ss.normaltest(norm_dist) #检验是否符合正态分布# 返回结果:NormaltestResult(statistic=3.712,pvalue=0.1562) p值大于0.05,符合正态分布#卡方分布检验ss.chi2_contingency([[15,95],[85,5]]) #卡
Python 常用统计包【01-pandas】【02-scipy.stats】【03-numpy】【04-sklearn.linear_model】 pandas-描述性统计import pandas as pddf=pd.read_csv('路径',sep='/n') #读取数据###描述性统计df.mean() #求均值df.median() #求中位数df.mode() #求众数df.quantile(q=0.25) #求分位数 q=0.25 0.5 0.75 df.std() #求标准差df.var()#求方差df.sum()#求和df.skew()#求偏态系数df.kurt()#求峰态系数scipy.stats
SQL碎知识 1、在已知表格添加一列ALTER TABLE <表名> ADD COLUMN <新字段名> <数据类型> [约束条件] [FIRST|AFTER 已存在的字段名];在last_update后面新增加一列名字为create_date, 类型为datetime, NOT NULL,默认值为’2020-10-01 00:00:00’alter table actoradd COLUMN create_date datetime not null DEFAULT '202
SQL :ALTER添加索引 ALTER TABLE tbl_name ADD PRIMARY KEY (column_list): 该语句添加一个主键,这意味着索引值必须是唯一的,且不能为NULL。ALTER TABLE tbl_name ADD UNIQUE index_name (column_list): 这条语句创建索引的值必须是唯一的(除了NULL外,NULL可能会出现多次)。ALTER TABLE tbl_name ADD INDEX index_name (column_list): 添加普通索引,索引值可出现多次。
SQL创建数据表的三种方法 常规创建create table if not exists 目标表creat table if not exits actor(first_name varchar(45) not null,last_name varchar(45) not null)复制表格create 目标表 like 来源表将table1的部分拿来创建table2create table if not exists actor_name(first_name varchar(45) not null,l
SQL 三种插入数据语句 insert into表示插入数据,数据库会检查主键,如果出现重复会报错;replace into表示插入替换数据,需求表中有PrimaryKey,unique索引,如果数据库已经存在数据,则用新数据替换,如果没有数据效果则和insert into一样;insert ignore表示,如果中已经存在相同的记录,则忽略当前新数据;...
Python第三方库之requests raquest库两个重要对象:response对象和requests对象r=requests.get(url)response对象常用的属性:(1)r.status_code:HTTP请求的返回状态,200表示连接成功,404表示失败;(2)r.text:HTTP响应内容的字符串形式——url对应的页面内容;(3)r.encoding:从HTTPheader中猜测的响应内容编码方式;(4)r.apparent_encoding:从内容中分析出的想听内容编码方式(备选编码方式);r.encodi
数据库的存储过程与触发器 数据库的存储过程定义:存储过程是一组为了完成特定过程的SQL的语句集。类似函数这样子的。分类:系统存储过程、用户存储过程、扩展存储过程。、、、系统存储过程主要用来从系统中获取信息,完成数据库服务器的管理工作,通常以sp_开头。常用的如下:(1)sp_helpbd:用于查看数据库的名称及大小。(2)sp_helptext:用于显示规则、默认值、未加密的存储过程、用户定义函数、触发器或视图的...
SQL数据库编程语言 1、注释-- 表示单行注释/*.... 表示多行注释*/ 2、变量(局部变量、全局变量)局部变量:DECLARE @variable DatetypeUSE 销售管理数据库 GODECLARE @BJB VARCHAR(20) --声明变量笔记本SET @BJB ='笔记本' --对变量赋值 笔记本DECLARE @MJBH VARCHAR(20) --声明买...
行业轮动投资策略 1、策略介绍本策略从历史收益率的角度看行业轮动,希望从行业指数的历史数据找出统计上具有显著相关性的行业。按照行业轮动理论的思想,本策略选取的行业标准和策略思想如下:% 行业:申万一级行业(28个,包括综合行业)% 数据:从2015年1月1日至今的历史上所有申万一级行业的每日行情数据。% 思想:首先,利用行业的每日行情数据计算出各行业的月度行情,根据月度行情数据计算出月度收益率数据;其次,...
期货模板实例 以下是期货专用的API:1、get_symbol(获得主力连续合约的映射合约)我们在进行生成信号时,可以使用助理合约时间序列,但在下单时要使用具体的合约。若想得到当天的主力合约映射的具体合约符号时,则可以使用context.get_symbol获取:context.get_symbol(symbol)context.gte_symbol方法用于获取某个主力连续合约的映射合约,返回主力合约...
策略交易细节 1、回测交易撮合机制和订单委托在回测时,订单撮合过程发生在运行handle_data函数结束之后,是以历史实时行情进行的虚拟撮合。由于是对真实场景的模拟,所以订单并不会立刻以某个价格成交,而是通过和实时行情的具体价格和具体成交量进行对比,来断定成交价格和成交时间。由于订单撮合是以一篮子订单形式处理的,所以在处理订单时会有细微的调整。具体的交易细节和订单撮合机制如下:1)日线级别策略回测撮合...
策略的风险评价指标 1、年化收益率(Annualized Returns)表示投资期限为一年的预期收益率,公式为:其中,n指回测交易日数量2、基准年化收益率(Benchmark Returns)表示参考标准年化收益率,公式为:其中n指回测交易日数量3、阿尔法(Alpha)表示在投资中面临的非系统性风险。Alpha是投资者获得的与市场波动无关的回报,一般用来度量投资者的投资技能,比如投资者获得了12%...
股票模板实例 先上代码:import pandas as pdstart='2014-11-01'end='2018-01-01'benchmark='HS300'universe=DynamicUniverse('HS300')refresh_rate=60 #此处未给出频率参数,默认是‘d’(天)max_history_window=60accounts={ 'fantasy_a...
通联数据回测平台的测试 5.1 回测平台函数及参数介绍5.1.1设置回测参数1、start 与 end(设置回测区间)其类型为字符串或datetimestart='2017-01-01'end='2018-01-01'2、universe(证券池)其类型为listuniverse指策略回测的证券池,及策略逻辑作用的域,下单与历史数据获取都只限于universe中的证券。universe支持全部A股及全部...
量化分析-常用数据的获取与整理 常见的量化因子:1、常用的技术指标类:指主流的技术指标、使用前的复权价格计算,反应股票的量价信息,例如hurst等指标。2、每股指标:指每股的相关财务指标,例如EPS、每股企业自由现金流等。3、价值类:体现市场对公司的估值大小,例如PB、PE等4、质量类:体现公司的盈利能力与收益质量,例如营业利润率,反映了公司的营业利润(经过TTM调整)占营收的比例。5、动量类:衡量股票价格的“惯性效应...