



参考:https://www.cnblogs.com/xd-scut/p/12939331.html

e.g 一个二维运动例子
卡尔曼的核心思想:处理估计误差和测量误差




一个代码例子
import numpy as np
import math
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
#定义一个产生符合高斯分布的函数,均值为loc=0.0,标准差为scale=sigma,输出的大小为size
def gaussian_distribution_generator(sigma):
return np.random.normal(loc=0.0,scale=sigma,size=None)
# 状态转移矩阵,上一时刻的状态转移到当前时刻
A = np.array([[1,1],[0,1]])
# 过程噪声w协方差矩阵Q,P(w)~N(0,Q),噪声来自真实世界中的不确定性
Q = np.array([[0.01,0],[0,0.01]])
# 测量噪声协方差矩阵R,P(v)~N(0,R),噪声来自测量过程的误差
R = np.array([[1,0],[0,1]])
# 传输矩阵/状态观测矩阵H
H = np.array([[1,0],[0,1]])
# 控制输入矩阵B
B = None
# 初始位置和速度
X0 = np.array([[0],[1]])
# 状态估计协方差矩阵P初始化
P =np.array([[1,0],[0,1]])
if __name__ == "__main__":
#---------------------初始化-----------------------------
#真实值初始化 这里还要再写一遍np.array是保证它的类型是数组array
X_true = np.array(X0)
#后验估计值Xk的初始化
X_posterior = np.array(X0)
#第k次误差的协方差矩阵的初始化
P_posterior = np.array(P)
#创建状态变量的真实值的矩阵 状态变量1:速度 状态变量2:位置
speed_true = []
position_true = []
#创建测量值矩阵
speed_measure = []
position_measure = []
#创建状态变量的先验估计值
speed_prior_est = []
position_prior_est = []
#创建状态变量的后验估计值
speed_posterior_est = []
position_posterior_est = []
#---------------------循环迭代-----------------------------
#设置迭代次数为30次
for i in range(30):
#--------------------建模真实值-----------------------------
# 生成过程噪声w w=[w1,w2].T(列向量)
# Q[0,0]是过程噪声w的协方差矩阵的第一行第一列,即w1的方差,Q[1,1]是协方差矩阵的第二行第二列,即为w2的方差
# python的np.random.normal(loc,scale,size)函数中scale输入的是标准差,所以要开方
Q_sigma = np.array([[math.sqrt(Q[0,0]),Q[0,1]],[Q[1,0],math.sqrt(Q[1,1])]])
w = np.array([[gaussian_distribution_generator(Q_sigma[0, 0])],
[gaussian_distribution_generator(Q_sigma[1, 1])]])
# print('00',Q[0,0],'它的类型是',type(Q[0,0]))
# print('开根号的00', Q_sigma[0, 0], '它的类型是', type(Q_sigma[0, 0]))
# print('00的平方根',math.sqrt(Q[0,0]),"它的类型是",type(math.sqrt(Q[0,0])))
# print('w[',i,']=',w)
# 真实值X_true 得到当前时刻的状态;之前我一直在想它怎么完成从Xk-1到Xk的更新,实际上在代码里面直接做迭代就行了,这里是不涉及数组下标的!!!
#dot函数用于矩阵乘法,对于二维数组,它计算的是矩阵乘积
X_true = np.dot(A, X_true) + w
# 速度的真实值是speed_true 使用append函数可以把每一次循环中产生的拼接在一起,形成一个新的数组speed_true
speed_true.append(X_true[1,0])
position_true.append(X_true[0,0])
#print(speed_true)
# --------------------生成观测值-----------------------------
# 生成过程噪声
R_sigma = np.array([[math.sqrt(R[0,0]),R[0,1]],[R[1,0],math.sqrt(R[1,1])]])
v = np.array([[gaussian_distribution_generator(R_sigma[0,0])],[gaussian_distribution_generator(R_sigma[1,1])]])
# 生成观测值Z_measure 取H为单位阵
Z_measure = np.dot(H, X_true) + v
speed_measure.append(Z_measure[1,0]),
position_measure.append(Z_measure[0,0])
# --------------------进行先验估计-----------------------------
# 开始时间更新
# step1:基于k-1时刻的后验估计值X_posterior建模预测k时刻的系统状态先验估计值X_prior
# 此时模型控制输入U=0
X_prior = np.dot(A, X_posterior)
# 把k时刻先验预测值赋给两个状态分量的先验预测值 speed_prior_est = X_prior[1,0];position_prior_est=X_prior[0,0]
# 再利用append函数把每次循环迭代后的分量值拼接成一个完整的数组
speed_prior_est.append(X_prior[1,0])
position_prior_est.append(X_prior[0,0])
# step2:基于k-1时刻的误差ek-1的协方差矩阵P_posterior和过程噪声w的协方差矩阵Q 预测k时刻的误差的协方差矩阵的先验估计值 P_prior
P_prior_1 = np.dot(A, P_posterior)
P_prior = np.dot(P_prior_1, A.T) + Q
# --------------------进行状态更新-----------------------------
# step3:计算k时刻的卡尔曼增益K
k1 = np.dot(P_prior, H.T)
k2 = np.dot(H, k1) + R
#k3 = np.dot(np.dot(H, P_prior), H.T) + R k2和k3是两种写法,都可以
K = np.dot(k1, np.linalg.inv(k2))
# step4:利用卡尔曼增益K 进行校正更新状态,得到k时刻的后验状态估计值 X_posterior
X_posterior_1 = Z_measure -np.dot(H, X_prior)
X_posterior = X_prior + np.dot(K, X_posterior_1)
# 把k时刻后验预测值赋给两个状态分量的后验预测值 speed_posterior_est = X_posterior[1,0];position_posterior_est = X_posterior[0,0]
speed_posterior_est.append(X_posterior[1,0])
position_posterior_est.append(X_posterior[0,0])
# step5:更新k时刻的误差的协方差矩阵 为估计k+1时刻的最优值做准备
P_posterior_1 = np.eye(2) - np.dot(K, H)
P_posterior = np.dot(P_posterior_1, P_prior)
# ---------------------再从step5回到step1 其实全程只要搞清先验后验 k的自增是隐藏在循环的过程中的 然后用分量speed和position的append去记录每一次循环的结果-----------------------------
# 可视化显示 画出速度比较和位置比较
if True:
# 画出1行2列的多子图
fig, axs = plt.subplots(1,2)
#速度
axs[0].plot(speed_true,"-",color="blue",label="速度真实值",linewidth="1")
axs[0].plot(speed_measure,"-",color="grey",label="速度测量值",linewidth="1")
axs[0].plot(speed_prior_est,"-",color="green",label="速度先验估计值",linewidth="1")
axs[0].plot(speed_posterior_est,"-",color="red",label="速度后验估计值",linewidth="1")
axs[0].set_title("speed")
axs[0].set_xlabel('k')
axs[0].legend(loc = 'upper left')
#位置
axs[1].plot(position_true,"-",color="blue",label="位置真实值",linewidth="1")
axs[1].plot(position_measure,"-",color="grey",label="位置测量值",linewidth="1")
axs[1].plot(position_prior_est,"-",color="green",label="位置先验估计值",linewidth="1")
axs[1].plot(position_posterior_est,"-",color="red",label="位置后验估计值",linewidth="1")
axs[1].set_title("position")
axs[1].set_xlabel('k')
axs[1].legend(loc = 'upper left')
# 调整每个子图之间的距离
plt.tight_layout()
plt.figure(figsize=(60, 40))
plt.show()
7万+

被折叠的 条评论
为什么被折叠?



