题目:Real-time Scene Text Detection with Differentiable Binarization
motivation:
文字检测算法可以大致分为两类:基于回归的方法和基于分割的方法。基于分割的方法先通过网络输出图片的文本分割结果,使用预设的阈值将分割结果图转换为二值图。使用阈值来判定前景和背景的操作,这个操作是不可微的,所以无法使用网络将该部分流程放入到网络中训练,本文通过学习threshmap和使用可微的操作来将阈值转换放入到网络中训练。作者想让二值化更牛逼。
method:





牛逼吧。。。可微耶!
lossfun:
DBNet是一种实时场景文本检测方法,它通过引入可微分的二值化过程,解决了传统阈值转换的不可微问题,从而允许整个流程在神经网络中进行端到端训练。论文提出的方法优化了二值化步骤,提高了检测的准确性。实验结果显示了这种方法的有效性。
最低0.47元/天 解锁文章
189

被折叠的 条评论
为什么被折叠?



