自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

一碗白开水一

一碗白开水一

  • 博客(96)
  • 收藏
  • 关注

原创 I-O-U you should know

SmoothL1->IoU->GIoU->DIoU->CIoU LossSmoothL1由微软rgb大神在Fast RCNN论文提出设x为 真实值与预测值之间的差L1_LOSS=∣x∣L1\_LOSS = |x|L1_LOSS=∣x∣缺点:1) L1_LOSSL1\_LOSSL1_LOSS损失函数在0处不可导;2) L1_LOSSL1\_LOSSL1_LOSS对x的导数为常数,在训练后期,x很小时,如果learning rate 不变,损失函数会在稳定值附近波动,很

2020-08-21 17:07:29 515 1

原创 [论文阅读]CBNet|A Novel Composite Backbone Network Architecture for Object Detection

题目: A Novel Composite Backbone Network Architecture for Object Detection作者: Yudong Liu,1 Yongtao Wang,1 Siwei Wang,1 TingTing Liang,1Qijie Zhao,1 Zhi Tang,1 Haibin Ling 2Motivation:作者觉得目标检测网络的backbone非常重要,于是要优化一个牛逼的backbone出来,于是乎CBNet问世。Method:就是把多个ba

2020-08-13 10:06:45 438

原创 [论文阅读]ResNetXt|Aggregated Residual Transformations for Deep Neural Networks

题目: Aggregated Residual Transformations for Deep Neural Networks作者: Saining Xie; Ross Girshick ; Piotr Doll´ar;Zhuowen Tu; Kaiming He看到Kaiming He就不陌生了吧Motivation:作者还是为了找到一种更优的方法或者卷积方式来做目标分类。于是乎提出ResNetXt。Method:作者想出这样一种方法:a)b)只是concatenate的方法不一样,c

2020-08-12 17:05:22 1016

原创 【论文阅读】DetectoRS|Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution

题目:DetectoRS:Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution作者:Siyuan Qiao Liang-Chieh Chen Alan YuilleMotivation:作者看到很多目标检测的网络都采用looking and thinking twice 的机制,然后作者也想来爽一把,于是乎牛逼的DetectoRS问世了。Methods:本文主要体现looking and

2020-08-12 13:34:14 668

原创 [论文阅读]Cascade RCNN|Cascade R-CNN: Delving into High Quality Object Detection

题目:Cascade R-CNN: Delving into High Quality Object Detection作者:Zhaowei Cai ; Nuno VasconcelosMotivation:作者认为在目标检测过程中,决定正负样本的IOU通常会产生检测噪声,随着IOU增加,效果却变差。作者认为是由于1)单纯提高了IoU阈值,满足这个阈值条件的proposals必然比之前少了,IOU增加,正样本数量少,容易导致过拟合,导致检测效果变差。2)在inference阶段,proposal与训练

2020-08-11 11:24:37 395

原创 R-P-N you should know

Region Proposal Networks是Faster RCNN出新提出来的proposal生成网络。1、生成anchorsgenerate_anchor_base(base_size=16, ratios=[0.5, 1, 2], anchor_scales=[8, 16, 32])一般是9个矩形,共有3种尺度上的三种宽高比。如下图:2、Proposal 训练正负样本其中2代表正负样本,4代表坐标。每个feature map 上的像素点对9个anchor进行回归处理:18=2X

2020-08-06 15:58:46 136

原创 S o r t & Deep S o r t 多目标跟踪

Sort (IPIL 2016): SIMPLE ONLINE AND REALTIME TRACKING在跟踪之前,对所有目标已经完成检测,实现了特征建模过程。第一帧进来时,以检测到的目标初始化并创建新的跟踪器,标注id。后面帧进来时,先到卡尔曼滤波器中得到由前面帧box产生的状态预测和协方差预测。求跟踪器所有目标状态预测与本帧检测的box的IOU,通过匈牙利指派算法得到IOU最大的唯一匹配(数据关联部分),再去掉匹配值小于iou_threshold的匹配对。用本帧中匹配到的目标检测box去更新

2020-08-04 14:28:19 465

原创 Hungarian algorithm匈 牙 利 算 法

步骤:正常情况下求指派问题最小时将指派问题转化成矩阵,不足的补0.如果○的个数少于n,则进行这一步:返回步骤(2),直到得到n个0元素,即得到最优解。求指派问题最大时人数与工作数不等的指派问题一个人可做几件事的指派问题...

2020-08-04 13:47:27 464

原创 简话T T S(持续更新)

T T S,WavenetWavenet并不是一个端到端模型,由于它的输入并不是raw text而是经过处理的特征,因此它实际上只是代替了传统TTS pipeline的后端(回忆我们在之前文章中的概念,传统TTS pipeline由前端和后端组成)。Wavenet最大的成功之处就是使用dilated causal convolution技术来增加CNN的receptive field,从而提升了模型建模long dependency的能力,如下图所示:另外,Wavenet也使用了很多当时deep l

2020-08-03 11:03:02 719

原创 [论文阅读]CCPD|Towards End-to-End License Plate Detection and Recognition: A Large Dataset and Baseline

题目:Towards End-to-End License Plate Detectionand Recognition: A Large Dataset and Baseline作者:Zhenbo Xu ;Wei Yang;etc…Motivation:作者认为目前现有的数据集都比较小,于是作者整个大的CCPD,然后基于这个数据集又设计了一个检测模型。Methods:作者通过各种办法做了这个数据集,很丰富,很感人。然后主要看作者设计的检测模型:The Roadside Parking Net

2020-07-23 14:03:47 1190

原创 ROI Pooling &ROI Align

ROI Pooling 的作用是根据预选框的位置坐标在特征图中将相应区域池化为固定尺寸的特征图,以便进行后续的分类和包围框回归操作。Fast-RCNN,Faster-RCNN中用到。ROI Align 是在Mask-RCNN这篇论文里提出的一种区域特征聚集方式, 很好地解决了ROI Pooling操作中两次量化造成的区域不匹配(mis-alignment)的问题。如 图所示,这是一个Faster-RCNN检测框架。输入一张800800的图片,图片上有一个665665的包围框(框着一只狗)。图片经过主干.

2020-07-22 15:38:59 338

原创 YOLO you should know

文章目录《YOLO V1》《YOLO V2》《YOLO V3》《YOLO V4》《SlimYOLOv3》《YOLOV3-model-pruning》《Gaussian_YOLOv3》顶会ICCV2019《YOLO_Nano》《DIou_YOLOV3》 顶会AAAI2020《GloU_YOLOv3》顶会CVPR2019《X_YOLO》《yolov3-channel-and-layer-pruning》《YOLOv3-complete-pruning》《YOLOV3_PyTorch》《YOLO_6D》《YOLO

2020-06-30 21:55:33 527

原创 [论文阅读]DeepOtsu:Document Enhancement and Binarization using Iterative Deep Learning

题目:DeepOtsu:Document Enhancement and Binarization using Iterative Deep Learning作者:Sheng He , Lambert Schomaker**Motivation:**作者想用一种新颖的方式来替代传统的Otsu, 于是加入深度学习的方式构建DeepOtsu.methods:作者试图找到背景噪声e,因此设计网络:一次不够,就多次减去噪声:Experments:我觉得文章在领域内应用比较有新意,其他就不多

2020-06-16 13:44:51 436

原创 简话V I D(持续更新)

基于视频的目标检测任务相比于静态图像的目标检测任务,目标的外观、形状、尺度等属性会随着目标的运动发生变化,在检测过程中如何保持时间顺序上目标的一致性从而不会使目标在中间某帧丢失,这是视频目标检测任务的主要难点。由于视频比静态图像多了一个时间维度上的信息,所以很多视频目标检测算法利用该信息来增强检测性能。第一种是对视频中每一帧进行目标检测,然后在使用跟踪算法对目标框进行跟踪,使用跟踪的结果对之前的检测结果进行修正。另一种是利用目标在视频中因为运动产生变化的信息直接在视频上进行目标检测,比如光流就是其中一种

2020-05-27 13:30:23 726

原创 [论文阅读] CVPR2017|DFF:Deep Feature Flow for Video Recognition

题目:Deep Feature Flow for Video Recognition作者:Xizhou Zhu Yuwen Xiong Jifeng Dai Lu Yuan Yichen WeiMotivation:作者认为视频目标检测每一帧上用CNN计算特征太慢了,两个相邻帧有相似的feature map,就想用光流算法来做中间的帧。于是DFF就出来了。Methods:这里作者通过可视化resnet101最后一个卷积层里面的两个卷积核输出的特征来进行了验证。可以看到中间的特征图上激活的

2020-05-21 15:54:44 828

原创 Paper Writer

to this end : 为了这个目的。ubiquitous: 普遍存在的;无所不在的refer to A as B: 把A当作,称作B.

2020-05-08 17:42:56 388

原创 About Tensor RT

what is tensor RT?一般的深度学习项目,训练时为了加快速度,会使用多GPU分布式训练。但在部署推理时,为了降低成本,往往使用单个GPU机器甚至嵌入式平台(比如 NVIDIA Jetson)进行部署,部署端也要有与训练时相同的深度学习环境,如caffe,TensorFlow等。由于训练的网络模型可能会很大(比如,inception,resnet等),参数很多,而且部署端的机器性能存...

2020-05-08 10:18:48 320

原创 [论文阅读]YOLOv4| YOLOv4:Optimal Speed and Accuracy of Object Detection

题目:YOLOv4: Optimal Speed and Accuracy of Object Detection作者:Alexey Bochkovskiy, Chien-Yao Wang,Hong-Yuan Mark Lia【Joseph 因为他的作品被用到了军事等领域,今年2月宣布退出CV, 向yolo创始人Joseph Redmon致敬!】Motivation:作者认为常规的网络在一...

2020-04-27 16:26:15 613

原创 What do you know about activation functions?

What do you know about activation functions?Only Relu?No…No…No…Mish activation function

2020-04-26 09:32:45 159

原创 [论文阅读]Object Detection With Deep Learning: A Review

题目:Object Detection With Deep Learning: A Review作者:Zhong-Qiu Zhao、 Peng Zheng、Shou-Tao Xu, and Xindong WuMotivation:作者想写一篇综述Methods:作者介绍了传统目标检测的三步:感兴趣区域提取、特征提取、分类作者又说了目标检测的领域划分,然后分别作详细介绍。然后作者分...

2020-04-22 10:51:28 2038 2

原创 [论文解读]|PAN:Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

题目:Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network作者:Wenhai Wang, Enze Xie,Xiaoge Song, Yuhang Zang, Wenjia Wang, Tong Luy, Gang Yu, and Chunhua ShenMotivation:...

2020-04-21 14:02:40 1322 5

原创 Research Directions

1、制图作业中由主、府视图自动绘制左视图及2维自动转3维等(田老师)

2020-04-02 17:18:21 212

原创 简话G A N(持续更新)

建立两个网络netG和netD1) Generatefake_H = netG(var_L)loss1 = lossfun(fake_H, GT)loss2 = lossfun(netD(self.fake_H),True)loss_g=0.2*loss1+0.8*loss2loss_g.backward()2)Discriminationloss1 = lossfun(netD...

2020-03-17 15:09:40 173

原创 简话V R/S V(持续更新)

文章目录声纹识别(VR-Voiceprint Recognition/SV-Speaker Verification)概述声纹识别(VR-Voiceprint Recognition/SV-Speaker Verification)概述声纹,是对语音中所蕴含的、能表征和标识说话人的语音特征,以及基于这些特征(参数)所建立的语音模型的总称,而声纹识别是根据待识别语音的声纹特征识别该段语音所对应的...

2020-02-19 15:16:26 364

原创 简话S R(持续更新)

目前基于深度学习(主要还是CNN)最为经典的论文应该是SRCNN[1]、FSRCNN[2]、ESPCN[3]、VDSR[4]、EDSR[5]、SRGAN[6]这几篇论文。一、从SRCNN到FSRCNNSRCNN是最早用CNN来进行超分辨率重建的论文(Kaiming He也参与其中),FSRCNN是SRCNN作者的改进,主要贡献在于直接原图像进行端对端的重建,在速度上也非常快,如图。二、ES...

2020-02-10 18:09:32 852

原创 简话V O T(持续更新)

经典滤波:camshift、meanshift、Kalman filter、Optical flow

2020-01-15 14:02:24 1042

原创 《星球大战》与苹果手机

1979年,由于《星球大战》电影大获成功,卢卡斯影业成立了电脑绘图部,与其并行产业就是著名的“工业光魔”。史蒂夫·乔布斯成立苹果公司,结果被股东踢出局了。1986年,史蒂夫·乔布斯(Steve Jobs)以1000万美元收购了乔治·卢卡斯的电脑动画部,拿来做科技产业,结果工作人员都不懂,也干不好。结果一个宣传片确拿了奥斯卡奖,然后就开启了动画系列的时代,《超人总动员》、《玩具总动员》、《汽车总动...

2019-12-27 13:08:33 366

原创 [论文解读]ICML 2019|EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

题目:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks作者:GOOGLE Mingxing Tan Quoc V. LeMotivation:作者认为网络的扩展是对效果有很大帮助的,但是人们一直没有找到一个有效的扩展方法,作者发现在网络扩展时,通过平衡网络的深度、宽度、像素大小之间的关系来建模,...

2019-12-25 14:13:00 865

原创 [论文解读]arXiv 219|MobileNetV3: Searching for MobileNetV3

题目:Searching for MobileNetV3作者:Andrew Howard 、 Mark Sandler 、 Grace Chu 、 Liang-Chieh Chen 、 Bo Chen 、Mingxing Tan…Motivation:作者还是想在移动端使网络的性能发挥到极致,从而提出了MobileNetV3-Large 、MobileNetV3-Small。Related...

2019-12-17 11:58:15 541

原创 Image1000优秀网络简介(目-标-分-类)

文章目录历年image1000优秀网络汇总AlexNetVGGNetGoogleNetResNetInceptionResNetResNeXtDenseNetMobileNetSE ResNetSuffleNet历年image1000优秀网络汇总参考论文《Deep Learning for Generic Object Detection: A Survey》历年image1000优秀网络汇总...

2019-12-17 09:39:20 935

原创 [论文解读]CVPR 2020|EfficientDet: Scalable and Efficient Object Detection

论文题目:EfficientDet: Scalable and Efficient Object Detection论文作者:Mingxing Tan Ruoming Pang Quoc V. Le注:以下是个人解读,若有出入之处,还请指出。Motivation:作者认为检测效果好的网络,模型都比较大,而且速度大都比较慢。检测速度快的网络,大都检测效果差,因此,提出EfficientDet...

2019-12-13 17:55:49 1462

原创 数学之美(持续更新)

真正的宇宙第一公式 ——欧拉公式泰勒展开自然常数e(欧拉数)自然指数exe^xex的泰勒级数展开eixe^{ix}eix的泰勒级数展开sin(x)做泰勒级数展开cos(x)做泰勒级数展开eix=cos(x)+i∗sin(x)e^{ix}=cos(x)+i*sin(x)eix=cos(x)+i∗sin(x)eiπ=cos(π)+i∗sin(π)→eiπ−1=0e^{i\...

2019-12-12 10:14:53 1281

原创 [代码] QT之TCP/IP 通信

QT之TCP/IP 通信:很简单不多说,直接上代码。服务器:#include "servewidget.h"#include "ui_servewidget.h"ServeWidget::ServeWidget(QWidget *parent) : QWidget(parent), ui(new Ui::ServeWidget){ ui->setupUi...

2019-10-11 16:58:10 326

原创 [论文解读]ICCV2019|Cascade RetinaNet: Maintaining Consistency for Single-Stage Object Detection

题目:Cascade RetinaNet:Maintaining Consistency for Single-Stage Object Detection作者:HongKai Zhang; Hong Chang;BingPeng Ma等Motivation:作者认为RetinaNet天真的直接将相同设置的多级串联在一起是没有多大收获,主要是类别的置信度和坐标之间的错误联系,以及不同Stag...

2019-10-09 10:36:24 899

原创 简话A S R (持续更新)

概要语音预处理不管是进行什么参数分析以及采用什么分析方法,都需要一些预先的处理,如语音信号的数字化、语音信号的端点检测、预加重、加窗和分帧等,这些也是不可忽视的语音信号分析的关键技术。贯穿于语音分析全过程的是“短时分析技术”。语音识别中的端点检测(VAD)语音活动端点检测(VAD)已经是一个古老的话题,用于分离信号中语音信号和非语音信号,首先我们讲述VAD的三种做法:1,通过分帧,判断一帧...

2019-09-26 14:17:27 1314 1

原创 [论文解读]ICCV2019|Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty

题目:Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty作者:Jiwoong Choi , Dayoung Chun, Hyun Kim , Hyuk-Jae LeeMotivation:作者认为在常规的single stage目标检测网络中,分数和边框都是单独回归的,而回...

2019-09-04 16:23:05 4855 1

原创 E n t r o p y

2019-08-26 17:18:36 614

原创 机械、力学等知识纪要

功率、转速、扭矩的关系$$P=FV\F=T /R\V=2\piRn$$

2019-08-24 10:14:27 135

原创 简 话 N L P(持续更新)

NLP主要研究问题:信息检索机器翻译文档分类问答系统信息过滤自动文摘信息抽取文本挖掘舆情分析机器写作语音识别

2019-08-23 12:54:57 246

原创 R N N、L S T M原理与计算推导

RNNRNN简单结构图:计算推导:ht=fsigmoid(u∗xt+w∗ht−1)yt=fsigmoid(ht∗v)h_t = f_{sigmoid}(u*x_t+w*h_{t-1}) \\y_t = f_{sigmoid}(h_t*v)ht​=fsigmoid​(u∗xt​+w∗ht−1​)yt​=fsigmoid​(ht​∗v)LSTM...

2019-08-22 17:54:24 1044

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除