一碗白开水一
码龄6年
关注
提问 私信
  • 博客:98,998
    社区:1
    98,999
    总访问量
  • 96
    原创
  • 40,125
    排名
  • 61
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2018-11-29
博客简介:

一碗白开水一

博客描述:
一碗白开水一
查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    232
    当月
    3
个人成就
  • 获得37次点赞
  • 内容获得17次评论
  • 获得152次收藏
创作历程
  • 3篇
    2024年
  • 9篇
    2022年
  • 24篇
    2021年
  • 30篇
    2020年
  • 30篇
    2019年
成就勋章
TA的专栏
  • 论文阅读
    33篇
  • 简话系列
    9篇
  • NLP
    6篇
  • mathmatic
    6篇
  • OBD
    10篇
  • others
    10篇
  • VOT
    1篇
  • DPL
    13篇
  • 机械
    1篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【python 可视化库哪家强?】

原创
发布博客 2024.09.19 ·
91 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读】BoT-SORT: Robust Associations Multi-Pedestrian Tracking

作者来得很直接,就说他们用相机运动模型和优化卡尔曼做了个可以解决具有挑战的跟踪问题的算法:BOT-SORT;说他们在MOT17&20上表现是最好的。题目:BoT-SORT: Robust Associations Multi-Pedestrian Tracking。这部分相机运动补偿的工作StrongSORT也有做过,使用的是ECC方法;作者:Nir Aharon* Roy Orfaig Ben-Zion Bobrovsky。2)相机运动补偿方式改进bounding box的预测;
原创
发布博客 2024.08.13 ·
488 阅读 ·
8 点赞 ·
0 评论 ·
4 收藏

【论文阅读】YOLOv10: Real-Time End-to-End Object Detection

*NMS-free:**作者设计了2个lables assignments, one-to-one & one-to-many 两个标签分配策略。作者在训练的时候同事监督训练两个策略,在推理的时候用one-to-one,实现nms-free。来实现训练的时候one-to-one & one-to-many 的分配和计算,使one-to-one获得one-to-many最佳的效果。作者觉得YOLO系列的NMS和某些结构非常的耗时,提出NMS-free和一些列高效和低算力消耗的yolov-10.
原创
发布博客 2024.08.13 ·
317 阅读 ·
9 点赞 ·
0 评论 ·
6 收藏

why DW-Conv still slow?

MobileNet、ShuffleNet 在理论上速度很快,工程上并没有特别大的提升.为什么GPU上表现乏力的GPU,到CPU上反而一骑绝尘了呢?深度可分离卷积的总计算量变小了,但深度可分离卷积的层数变多了。若GPU的显存足够大,因为每层的计算都可以并行一次处理,则此时总运算时间的主导因素是网络的层数。...
原创
发布博客 2022.06.30 ·
412 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【tricks: rep-parameters】

组合:3x3卷积核+BN,组合2:1x1卷积核+BN,组合3:BN。这三种组合在推理计算上都可以等效转化成“3x3卷积核+偏置”的形式。我们都知道卷积也是一种线性运算如乘法一样,咱们把三组同规格的卷积核合并成一组卷积核的操作是很简单的。.........
原创
发布博客 2022.06.30 ·
180 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器视觉-坐标变换

仿射变换透视变换u,v是原始图片坐标,对应得到变换后的图片坐标x,y:
原创
发布博客 2022.03.11 ·
593 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

【论文阅读】Swin Transformer V2: Scaling Up Capacity and Resolution

题目:Swin Transformer V2: Scaling Up Capacity and Resolutionmotivation:作者提出了将Swin Transformer缩放到30亿个参数的技术 ,并使其能够使用高达1536×1536分辨率的图像进行训练。作者要做大做强。method:首先,对大型视觉模型的实验揭示了训练中的不稳定性问题。作者发现,在大型模型中,各层之间的激活幅度差异显著增大。仔细观察结构可以发现,这是由直接添加回主分支的残差单元的输出引起的。结果是激活值逐层累积,
原创
发布博客 2022.03.08 ·
4241 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

S-V-M

采用序列最小优化(SMO)算法求解αi\alpha_iαi​
原创
发布博客 2022.02.28 ·
192 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读】ATSS:Adaptive Training Sample Selection

题目:Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selectionmotivation:作者想找到anchor base 和anchor free 的区别,并设计一种anchor选取的方法。method :分析下RetinaNet和FCOS在算法上的差异,主要有以下3点:RetinaNet在特征图上每个点铺设多个anchor,而FCOS在特征图上每个点
原创
发布博客 2022.02.28 ·
213 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读】Generalized Focal Loss

Generalized Focal Loss
原创
发布博客 2022.02.24 ·
358 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[tricks]D-e-c-o-u-p-l-e-d H-e-a-d

yolox 中提出:
原创
发布博客 2022.02.24 ·
565 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

浮点数在计算机中的存储

F=S E M8.25 用二进制表示为:1000.011000.01 转换为科学计数法:1.0001 * 2^3任何一个数的科学计数法表示都为1. xxx * 2^n ,尾数部分就可以表示为xxxx,由于第一位都是1嘛,所以将小数点前面的1省略。E=127+e参考:https://www.cnblogs.com/wuyuan2011woaini/p/4105765.html...
原创
发布博客 2022.02.22 ·
107 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

c t c you should know

CTC 原理看了那么多的原理,觉得简单易懂的就这个:LOSS:如上图,对于最简单的时序为2的(t0t1)的字符识别,可能的字符为“a”,“b”和“-”,颜色越深代表概率越高。对于真实字符为空即“”的概率为0.60.6=0.36而真实字符为“a”的概率不只是”aa” 即0.40.4 , 实时上,“aa”, “a-“和“-a”都是代表“a”,所以,“a”的概率为:0.40.4 + 0.4 * 0.6 + 0.60.4 = 0.16+0.24+0.24 = 0.64所以“a”的概率比空“”的概率高
原创
发布博客 2021.12.13 ·
1320 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读】DBNet:Real-time Scene Text Detection with Differentiable Binarization

题目:Real-time Scene Text Detection with Differentiable Binarizationmotivation:文字检测算法可以大致分为两类:基于回归的方法和基于分割的方法。基于分割的方法先通过网络输出图片的文本分割结果,使用预设的阈值将分割结果图转换为二值图。使用阈值来判定前景和背景的操作,这个操作是不可微的,所以无法使用网络将该部分流程放入到网络中训练,本文通过学习threshmap和使用可微的操作来将阈值转换放入到网络中训练。作者想让二值化更牛逼。met
原创
发布博客 2021.12.02 ·
3176 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

AUC you should know

AUC(Area Under Curve)被定义为ROC曲线下与坐标轴围成的面积.一个二分类模型的阈值可能设定为高或低,每种阈值的设定会得出不同的 FPR 和 TPR ,将同一模型每个阈值的 (FPR, TPR) 坐标都画在 ROC 空间里,就成为特定模型的ROC曲线。ROC曲线横坐标为假正率(FPR),纵坐标为真正率(TPR)。e.g...
原创
发布博客 2021.10.21 ·
122 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

cv-INTVIEW you shold prepare.

python 基础数据结构机器学习基础opencvDPL
原创
发布博客 2021.08.09 ·
287 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读】YOLO-X:Exceeding YOLO Series in 2021

题目:YOLOX: Exceeding YOLO Series in 2021
原创
发布博客 2021.08.05 ·
7637 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【论文阅读】DETR (ECCV2020)|End-to-End Object Detection with Transformers

题目:End-to-End Object Detection with Transformers作者:Facebook AI – Nicolas Carion , Francisco Massa , Gabriel Synnaeve, Nicolas Usunier,Alexander Kirillov, and Sergey Zagoruykomotivation:作者想直接预测无序集合method:亮点我觉得有2:1)采用了transformer的模型架构;2)采用匈牙利算法的无序预
原创
发布博客 2021.07.28 ·
516 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

卡尔曼滤波

例如,n个人干n项工作的指派问题,如何让总的开销最小。首先知道其代价矩阵:from scipy.optimize import linear_sum_assignment cost =np.array([[4,1,3],[2,0,5],[3,2,2]])row_ind,col_ind=linear_sum_assignment(cost)print(row_ind)#开销矩阵对应的行索引print(col_ind)#对应行索引的最优指派的列索引print(cost[row_ind,col_
原创
发布博客 2021.07.28 ·
128 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TRS 中的position embedding

原创
发布博客 2021.07.27 ·
129 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多