论文记录-2014-N4-Fields: Neural Network Nearest Neighbor Fields for Image Transforms
论文内容
原文:N4-Fields: Neural Network Nearest Neighbor Fields for Image Transforms1
以下仅为作者阅读论文时的记录,学识浅薄,如有错误,欢迎指正。
摘要Abstract
-
We propose a new architecture for difficult image processing operations, such as natural edge detection or thin object segmentation.
本文提出一种针对困难图像处理操作(例如:自然边缘检测、稀疏物体分割)的架构。 -
The architecture is based on a simple combination of convolutional neural networks with the nearest neighbor search.
这种结构是基于卷积神经网络和近邻搜索的简单结合。 -
We focus our attention on the situations when the desired image transformation is too hard for a neural

本文提出了一种新的图像处理架构N4-Fields,它将卷积神经网络与近邻搜索相结合,用于解决自然边缘检测和稀疏物体分割等难题。研究发现,在神经网络难以直接学习到的复杂图像变换任务中,通过近邻搜索可以显著提升结果,并缓解训练过程中的欠拟合现象。在Berkeley Segmentation、NYU RGBD和DRIVE三个基准数据集上的实验表明,该方法的表现与最先进的方法相当或更优。
最低0.47元/天 解锁文章
3031

被折叠的 条评论
为什么被折叠?



