数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。
输入格式:
输入在一行中给出一个(2, 2 000 000 000]范围内的偶数N。
输出格式:
在一行中按照格式“N = p + q”输出N的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。
输入样例:
24
输出样例:
24 = 5 + 19
代码:
# include <stdio.h>
# include <stdlib.h>
# include <math.h>
typedef long long int long_int;
int judge_is_prime(int x){
int isPrime = 1,i = 3;
if(x == 1 || x % 2 == 0 && x != 2) isPrime = 0;
el

本文介绍了验证哥德巴赫猜想的编程实验,即验证大于2的偶数是否能表示为两个素数之和。实验中通过不断优化算法,从最初的O(n^2)复杂度降低到更优,最终成功解决了所有测试用例。作者强调了算法在解决问题中的关键作用,并分享了改进过程中的思考和挑战。
最低0.47元/天 解锁文章
4840

被折叠的 条评论
为什么被折叠?



