文章目录

格式化(formatting)是信号处理最基本的步骤,其目的是使消息(源信号)适合于数字处理。传输格式化(transmit formatting)是从源信息到数字码元的变换(在接收端则是相反的变换)。如果除了格式化之外,该步骤中还用到数据压缩,则称为信源编码(source coding)。一些学者认为格式化是信源编码的特例。本文讨论格式化(以及基带调制)。
在图 2.1 中,标号为“格式化”的突出部分涉及到一系列如何将模拟信息数字化的问题。数字消息在被进一步变换到基带(脉冲)波形之前,处于二进制 1 和 0 的逻辑状态,这个重要的变换称为脉冲调制,这些基带(脉冲)波形可以通过电缆传输。图 2.1 中标号为“基带信号处理”的方框包括了一系列将在本文描述的脉冲调制波形。所谓基带信号,通常指的是其频谱从直流(或直流附近)到不超过兆赫的有限值的信号。

1. 基带系统
图 2.1 给出了典型数字通信系统的框图。图 2.2 则以格式化和基带信号传输为重点,给出了此功能图的另一种描述。已经是数字格式的数据将不再格式化;而文本信息则由编码器转换成二进制数;模拟信息经过采样、量化和编码 3 个独立的过程而被格式化。格式化的结果均为二进制数字序列。

数字信号经由诸如金属导线或同轴电缆等基带信道进行传输。但如果不先将数字信号转换成适合信道传输的波形,这些二进制数字信号就不能在信道中传输。对于基带信道而言,脉冲即是适合的波形。
在图 2.2 中,从比特流到脉冲波形序列的变换发生在脉冲调制方框中。调制器的输出通常是一个脉冲序列,其特性与传输的数字信号有关。经信道传输后,恢复(解调)和检测脉冲波形并生成所传输的数字信号的一个估计值;最后一步(反)格式化,生成源信息的估计值。
2. 格式化文本数据(字符编码)
大多数通信数据(计算机之间的传输除外)的原始形式是文本信息或模拟信息。如果数据由文字、数字组成,这些数据将按照某一标准格式进行字符编码,常用的标准格式有用于信息交换
的 7 比特美国信息交换标准码(ASCII)、扩展二进制编码的十进制交换码(EBCDIC)、博多码和霍尔瑞斯码,由此可以将文本转换成数字格式。ASCII 码格式见图 2.3,EBCDIC 码的格式见图 2.4。


比特位表示串行传输的顺序,比特数 1 是第一个信号单元。因此,字符编码就是将文本转换为二进制数字(比特)。有时会修改现有的字符代码以用于某些特殊场合,比如 7 比特 ASCII 码(图 2.3)加一位后可用于差错检测。另一方面,有时字符代码被压缩为 6 比特的 ASCII 码,6 比特的 ASCII 码仅能提供 64 个字符,而 7 比特的 ASCII 码可以提供 128 个字符。
3. 消息、字符和码元
文本消息由包括文字和数字的字符序列组成。数字化传输时,这些字符首先被编码成比特序列,称为比特流(bits tream)或基带信号(base band signal)。然后从有限的码元组或 M = 2 k M= 2^k M=2k 个码元的字符表中,将 k k k 比特的码组组合成新的数字或码元。使用码元集大小为 M M M 的系统称为 M M M 进制系统( M M M-ary system)。在任何数字通信系统的设计中, k k k 或 M M M 的值是首要考虑的参数。对 k = 1 k = 1 k=1 的二进制系统而言,码元集大小 M = 2 M=2 M=2,调制器使用两个不同波形中的一个来代表二进制 1,另一个波形代表二进制 0。在这个特例中,码元与比特是相等的。对 k = 2 的四进制系统而言,在每个码元时间内,调制器使用 4 个不同波形之一来代表该码元。消息比特序列的划分取决于码组大小 M M M。下面的例子有助于阐明“消息”、“字符” 、“码元” 、“比特”和“数字波形”之间的关系。
3.1 消息、字符和码元的例子
图 2.5 给出了比特流划分的例子,它基于对 k k k 值或 M M M 值的系统标准规范。图中的文本消息为单词“THINK”,使用 6 比特的 ASCII 字符编码(图 2.3 中 1 比特位到 6 比特位)生成了由 30 个比特组成的比特流。图 2.5a 中码组的大小 M M M 定为 8(即每个码元代表一个八进制数),因此比特流被分成 3 个比特一组( k = log 2 8 k =\log_28 k=log28),产生的 10 个代表 8 进制码元的数字被发送。发射机必须能够发送 8 个不同的波形 s i ( t ) ( i = 1 , ⋯ , 8 ) s_i\left( t \right)\left( i = 1, \cdots, 8 \right) si(t)(i=1,⋯,8),来代表各种可能的码元,每个波形必须在一个码元周期中发送。图 2.5a 中的最后一行列出了 8 进制调制系统中传输的代表文本消息“THINK” 的 10 个波形。

在图 2.5b 中码组的大小 M M M 定为 32(即每个码元代表一个32 进制数),因此比特流被分成 5 个比特一组, 产生的 6 个代表 32 进制码元的数字被发送。注意,没有必要使码元边界和字符边界一致,第一个码元代表第一个字符“T”的 5/6 , 第二个码元代表字符“F”剩余的 1/6 和下一个字符“H”的 4/6, 依此类推,字符不一定要划分得很美观。系统将字符视为一串待传输的数字, 而不像终端用户(或用户的电传打字机)要从接收到的比特序列中获得文本信息。在 32 进制系统中,发射机要能够发送 32 个不同的波形 s i ( t ) ( i = 1 , ⋯ , 32 ) s_i\left( t \right)\left( i = 1, \cdots, 32 \right) si(t)(i=1,⋯,32),来代表可能被传输的码元。图 2.5b 中最后行列出了 32 进制调制系统中传输的代表文本消息“THINK”的 6 个波形。
4. 格化式模拟信息
模拟信息不像文本数据那样能够直接编码为字符,它必须首先转换成数字格式。将模拟波形转换成适合于数字通信系统传输的格式,首先必须对其进行采样,以形成离散的脉冲调制波形,下面讨论这一过程。
4.1 采样定理
模拟波形及其采样信号之间的联系由采样过程确定,这个过程可以用几种方法实现,最常用的是采样保持(sample-and-hold)。此时, 一个转换和存储装置(比如晶体管与电容,或者快门与胶卷)产生连续输入波形的一个采样序列。采样过程的输出称为脉冲幅度调制(PAM),因为待续的输出间隔可以由一个幅度经输入波形样值获取的脉冲序列来描述。将 PAM 波形通过简单的低通滤波器可以近似恢复出模拟波形。重要的问题是,滤波后的 PAM 波形与原始输入波形能达到什么样的近似程度?回顾一下采样定理: 频谱不超过 f m f_m fm 赫兹的带限信号可以由其等间隔采样值唯一确定,采样间隔为
T s ⩽ 1 2 f m 秒 T_s\leqslant \frac{1}{2f_m}秒 Ts⩽2fm1秒这也称为均匀采样定理(uniform sampling theorem),换句话说,采样间隔 T s T_s Ts 的上限可以由采样速率 f s f_s fs 来表示, 即 f s = 1 T s f_s = \dfrac{1}{T_s} fs=Ts1。对采样速率的限制称为奈奎斯特准则:
f s ⩾ 2 f m f_s\geqslant2f_m fs⩾2fm采样速率 f s = 2 f m f_s=2f_m fs=2fm 称为奈奎斯特频率。奈奎斯特准则是模拟信号能够由一组等间隔、离散时间样值在理论上完全恢复的充分条件。后续将用不同的采样方法证明采样定理的正确性。
4.1.1 冲激采样
下面利用傅里叶变换的频域卷积性质来证明采样定理。首先考虑使用一系列单位冲激函数进行理想采样的情况。假设如图 2.6a 所示的模拟波形 x ( t ) x\left( t \right) x(t) 的傅里叶变换为 X ( f ) X \left( f \right) X(f),在区间 − f m < f < f m -f_m < f <f_m −fm<f<fm 外的值为 0 0 0,如图 2.6b 所示。对 x ( t ) x\left( t \right) x(t) 的采样过程可视为将 x ( t ) x\left( t \right) x(t) 和如图 2.6c 所示的单位冲激序列 x δ ( t ) x_\delta\left( t \right) xδ(t) 相乘。单位冲激序列定义为
x δ ( t ) = ∑ n = − ∞ ∞ δ ( t − n T s ) x_{\delta}\left( t \right) =\sum_{n=-\infty}^{\infty}{\delta \left( t-nT_s \right)} xδ(t)=n=−∞∑∞δ(t−nTs)其中, T s T_s Ts 是采样周期, δ ( t ) \delta \left( t \right) δ(t)是单位冲激函数,或称为狄拉克德尔塔函数。 T s = 1 2 f m T_s =\dfrac{1}{2}f_m Ts=21fm时恰好满足奈奎斯特准则。

根据冲激函数的筛分性质 x ( t ) δ ( t − t 0 ) = x ( t 0 ) δ ( t − t 0 ) x\left( t \right) \delta \left( t-t_0 \right) =x\left( t_0 \right) \delta \left( t-t_0 \right) x(t)δ(t−t0)=x(t0)δ(t−t0),可得 x ( t ) x\left( t \right) x(t) 的采样信号 x s ( t ) x_s\left( t \right) xs(t) 为(如图 2.6e 所示)
x s ( t ) = x ( t ) x δ ( t ) = ∑ n = − ∞ ∞ x ( t ) δ ( t − n T s ) = ∑ n = − ∞ ∞ x ( n T s ) δ ( t − n T s ) x_s\left( t \right) =x\left( t \right) x_{\delta}\left( t \right) =\sum_{n=-\infty}^{\infty}{x\left( t \right) \delta \left( t-nT_s \right)}=\sum_{n=-\infty}^{\infty}{x\left( nT_s \right) \delta \left( t-nT_s \right)} xs(t)=x(t)xδ(t)=n=−∞∑∞x(t)δ(t−nTs)=n=−∞∑∞x(nTs)δ(t−nTs) 根据傅里叶变换的频域卷积性质,时域乘积 x ( t ) x δ ( t ) x\left( t \right) x_{\delta}\left( t \right) x(t)xδ(t) 对应于频域卷积 X ( f ) ∗ X δ ( f ) X\left( f \right) \ast X_{\delta}\left( f \right) X(f)∗Xδ(f),其中
X δ ( f ) = 1 T s ∑ n = − ∞ ∞ δ ( f − n f s ) X_{\delta}\left( f \right) =\frac{1}{T_s}\sum_{n=-\infty}^{\infty}{\delta \left( f-nf_s \right)} Xδ(f)=Ts1n=−∞∑∞δ(f−nfs)是冲激序列 x δ ( t ) x_{\delta}\left( t \right) xδ(t) 的傅里叶变换, f s = 1 T s f_s=\dfrac{1}{T_s} fs=Ts1 是采样速率。注意,一个冲激序列的傅里叶变换是另—个冲激序列,两个序列的周期值互为倒数关系,图 2.6c 和图 2.6d 分别表示冲激序列 x δ ( t ) x_{\delta}\left( t \right) xδ(t) 及其傅里叶变换 X δ ( f ) X_{\delta}\left( f \right) Xδ(f)。
函数与冲激函数相卷积时,只需对原函数进行如下的简单移位:
X ( f ) ∗ δ ( f − n f s ) = X ( f − n f s ) X\left( f \right) \ast \delta \left( f-nf_s \right) =X\left( f-nf_s \right) X(f)∗δ(f−nfs)=X(f−nfs)由此,采样波形的傅里叶变换 X s ( f ) X_s\left( f \right) Xs(f) 为
X s ( f ) = X ( f ) ∗ X δ ( f ) = X ( f ) ∗ [ 1 T s ∑ n = − ∞ ∞ δ ( f − n f s ) ] = 1 T s ∑ n = − ∞ ∞ X ( f − n f s ) X_s\left( f \right) =X\left( f \right) \ast X_{\delta}\left( f \right) =X\left( f \right) \ast \left[ \frac{1}{T_s}\sum_{n=-\infty}^{\infty}{\delta \left( f-nf_s \right)} \right] =\frac{1}{T_s}\sum_{n=-\infty}^{\infty}{X\left( f-nf_s \right)} Xs(f)=X(f)∗Xδ(f)=X(f)∗[Ts1n=−∞∑∞δ(f−nfs)]=Ts1n=−∞∑∞X(f−nfs) 因此,可以得出这样的结论: 在原来的频带范围内,采样信号 x s ( t ) x_s\left( t \right) xs(t) 的频谱 X s ( f ) X_s\left( f \right) Xs(f) 与原信号的频谱只差一个常数因子 1 T s \dfrac{1}{T_s} Ts1。另外,每隔 f s f_s fs 赫兹,采样信号频谱对自已进行周期性的复制。冲激函数的筛分性质使得冲激序列与其他函数的卷积变得非常容易。因此,将冲激函数作为采样函数,只需将图 2.6d 的冲激序列 X δ ( f ) X_{\delta}\left( f \right) Xδ(f) 与图 2.6b 中原函数的傅里叶变换 ∣ X ( f ) ∣ \left| X\left( f \right) \right| ∣X(f)∣ 相卷积,在冲激序列中每个冲激到来的频率处对 ∣ X ( f ) ∣ \left| X\left( f \right) \right| ∣X(f)∣ 进行复制就得到 ∣ X s ( f ) ∣ \left| X_s\left( f \right) \right| ∣Xs(f)∣,如图 2.6f 所示。
当采样速率选定后,例如 f s = 2 f m f_s=2f_m fs=2fm,频谱中每个波形与其相邻的波形之间在频率上相隔为 f s f_s fs 赫兹,经过滤波,理论上可以由样值完全恢复出模拟波形。但这时需要有无限陡峭边缘的滤波器。很明显,如果 f s > 2 f m f_s>2f_m fs>2fm,则相邻频谱之间在频率上间隔较远, 如图 2.7a 所示,这就使滤波变得容易实现。能够分离出基带频谱分量的典型低通滤波器特性如图中虚线所示。当采样速率降低到 f s < 2 f m f_s < 2f_m fs<2f
数字通信原理精讲

本文深入探讨数字通信系统的关键步骤,包括源信息的格式化、采样、量化、脉冲编码调制(PCM),以及基带信号脉冲波形的选择。文章详细讲解了非均匀量化与均匀量化、双二进制码的概念,以及如何通过引入可控码间串扰提高带宽利用率。
最低0.47元/天 解锁文章
6284

被折叠的 条评论
为什么被折叠?



