博弈论

(一)巴什博奕(Bash Game):
只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜.
若(m+1) | n,则先手必败,否则先手必胜。

显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜.

因此我们发现了如何取胜的法则:
如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜.

总之,要保持给对手留下(m+1)的倍数,就能最后获胜.

int main()
{
    int n;
    cin>>n;
    while(n--)
    {
        int a,b;
        cin>>a>>b;
        int t=a%(b+1);
        if(t>=1)
        {
            cout<<"first"<<endl;
        }
        else
        {
            puts("second");
        }
    }
}

(二)斐波那契博弈(Fibonacci Nim)
有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下:
1)先手不能在第一次把所有的石子取完,至少取1颗;
2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的2倍。
约定取走最后一个石子的人为赢家,求必败态。
结论:当n为Fibonacci数的时候,必败。

int main()
{
    int n;
    int a[maxn];
    a[0]=2;
    a[1]=3;
    for(int i=2;i<=50;i++)
    {
        a[i]=a[i-1]+a[i-2];
    }
    while(cin>>n,n)
    {
        int flag=0;
        for(int i=0;i<=50;i++)
        {
            if(n==a[i])
            {
                puts("Second win");
                flag=1;
                break;
            }
        }
        if(!flag)
        {
            puts("First win");
        }
    }
}

(三)威佐夫博奕(Wythoff Game):
有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜.

奇异局势下先手必败,非奇异局势下先手必胜。

这种情况下是颇为复杂的.我们用(ak,bk)(ak ≤bk ,k=0,1,2,…,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势.前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20).
可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而bk= ak + k,奇异局势有如下三条性质:

1、任何自然数都包含在一个且仅有一个奇异局势中.
由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而bk= ak + k > ak-1 + k-1 = bk-1 > ak-1 .所以性质1.成立.
2、任意操作都可将奇异局势变为非奇异局势.
事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势.如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势.
3、采用适当的方法,可以将非奇异局势变为奇异局势.

假设面对的局势是(a,b),若b = a,则同时从两堆中取走a 个物体,就变为了奇异局势(0,0);
如果a = ak ,b > bk,那么,取走b - bk个物体,即变为奇异局势;如果a = ak , b < bk ,则同时从两堆中拿走ak - ab - ak个物体,变为奇异局势( ab - ak , ab - ak+ b - ak);
如果a > ak ,b= ak + k,则从第一堆中拿走多余的数量a - ak 即可;如果a < ak ,b= ak + k,分两种情况,
第一种,a=aj (j < k),从第二堆里面拿走b - bj 即可;
第二种,a=bj (j < k),从第二堆里面拿走b - aj 即可.
从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜.
那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
ak =[k(1+√5)/2] (下取整 ), bk= ak + k (k∈N)
奇妙的是其中出现了有关黄金分割数的式子:(1+√5)/2 =1.618…,若两堆物品个数分别为x,y(x<y),则k=y-x,再判断x是否等于[(y
-x)*( √5+1)/2] 即可得知是否是奇异局势。

int main()
{
    int a,b;
    while(cin>>a>>b)
    {
        if(a>b)
            swap(a,b);
        int c=floor((b-a)*((sqrt(5.0)+1)/2));
        if(c==a)
        {
            puts("0");
        }
        else
        {
            puts("1");
        }
    }
}

(四)尼姆博弈(Nimm’s Game)
尼姆博弈是一个叫尼姆的人提出来的一个数字游戏,大概是这样的:
有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

异或算法: a⊕b = !ab + !ba (其中!a 为 非a)。
一、这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论自己如何拿,接下来对手都可以将其变为(0,n,n)的情形。
(大佬就是大佬,看到问题就想着1和0,这都能扯到一块去了)
计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号⊕表示这种运算,先看(1,2,3)的按位模2加的结果:
1 =二进制01
2 =二进制10
3 =二进制11 ⊕
———————
0 =二进制00 (注意不进位)
对于奇异局势(0,n,n)也一样,结果也是0。
任何奇异局势(a,b,c)都有a⊕b⊕c =0。
注意到异或运算的交换律和结合律,及a⊕a=0,:
a⊕b⊕(a⊕b)=(a⊕a)⊕(b⊕b)=0⊕0=0。
所以从一个非奇异局势向一个奇异局势转换的方式可以是:
1)使 a = c⊕b
2)使 b = a⊕c
3)使 c = a⊕b
例1。(14,21,39),14⊕21=27,39-27=12,所以从39中拿走12个物体即可达到奇异局势(14,21,27)。
例2。(55,81,121),55⊕81=102,121-102=19,所以从121中拿走19个物品就形成了奇异局势(55,82,102)。
例3。(29,45,58),29⊕45=48,58-48=10,从58中拿走10个,变为(29,45,48)。
例4。我们来实际进行一盘比赛看看:
甲:(7,8,9)->(1,8,9)奇异局势
乙:(1,8,9)->(1,8,4)
甲:(1,8,4)->(1,5,4)奇异局势
乙:(1,5,4)->(1,4,4)
甲:(1,4,4)->(0,4,4)奇异局势
乙:(0,4,4)->(0,4,2)
甲:(0.4,2)->(0,2,2)奇异局势
乙:(0,2,2)->(0,2,1)
甲:(0,2,1)->(0,1,1)奇异局势
乙:(0,1,1)->(0,1,0)
甲:(0,1,0)->(0,0,0)奇异局势
甲胜。
二、尼姆博弈模型可以推广到:有n堆若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这个游戏中的变量是堆数k和各堆的物品数N1,N2,……,Nk。
对应的组合问题是,确定先手获胜还是后手获胜以及两个游戏人应该如何取物品才能保证自己获胜
三、现在考虑各大堆大小分别为N1,N2,……Nk的一般的Nim博弈。将每一个数Ni表示为其二进制数(数的位数相等,不等时在前面补0):
N1 = as…a1a0
N2 = bs…b1b0
……
Nk = ms…m1m0
如果每一种大小的子堆的个数都是偶数,我们就称Nim博弈是平衡的,而对应位相加是偶数的称为平衡位,否则称为非平衡位。因此,Nim博弈是平衡的,当且仅当:
as +bs + … + ms 是偶数,即as⊕ bs ⊕ … ⊕ ms = 0
……
a1 +b1 + … + m1 是偶数,即a1 ⊕ b1 ⊕ … ⊕ m1 = 0
a0 +b0 + … + m0是偶数,即a0 ⊕ b0 ⊕ … ⊕ m0 = 0
于是,我们就能得出尼姆博弈中先手获胜策略:

Bouton定理:先手能够在非平衡尼姆博弈中取胜,而后手能够在平衡的尼姆博弈中取胜。即状态(x1, x2, x3, …, xn)为P状态当且仅当x1 ⊕ x2 ⊕ x3 ⊕… ⊕xn =0。这样的操作也称为Nim和(Nim Sum)
我们以一个两堆物品的尼姆博弈作为试验。设游戏开始时游戏处于非平衡状态。这样,先手就能通过一种取子方式使得他取子后留给后手的是一个平衡状态下的游戏,接着无论后手如何取子,再留给先手的一定是一个非平衡状态游戏,如此反复进行,当后手在最后一次平衡状态下取子后,先手便能一次性取走所有的物品而获胜。而如果游戏开始时游戏牌平衡状态,那根据上述方式取子,最终后手能获

实际解决
Nim博弈中如果规定最后取光者输,情况是怎样的?
初看起来问题要复杂很多(因为不能主动拿了,而要“躲着”拿,以免拿到最后一个物品),但对于Nim游戏来说,几乎是一样的:
首先按照普通规则一样的策略进行,直到恰好有一个物品数大于1的堆x。在这样的情况下,只需要把堆x中的物品拿得只剩1个物品或者拿完,让对手面临奇数堆物品,这奇数堆物品每堆恰好1个物品。这样的状态显然是必败的。由于你每次操作后需要保证Nim和为0,因此不可能在你操作后首次出现“恰好有一个物品数大于1的堆”。新游戏得到了完美解决

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值