动态规划 背包九讲 多重背包问题 (二进制优化)

10 篇文章 0 订阅

多重背包问题

有 N 种物品和一个容量是 V 的背包。

第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N≤1000
0<V≤2000
0<vi,wi,si≤2000

解题思路:就是把物品个数拆分成二进制的形式,进而用01背包的方式来求解,很大程度的进行了时间上的优化。

Code:

#include<iostream>
#include<algorithm>
#include<vector>

using namespace std;
typedef pair<int,int> pii;
const int maxn=1e3+7;

int f[maxn],v[maxn],w[maxn],s[maxn];

vector< pii > goods;
int main(){
    
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i]>>s[i];
    
    for(int i=1;i<=n;i++){
        for(int k=1;k<=s[i];k<<=1){
            s[i]-=k;
            goods.push_back(make_pair(v[i]*k,w[i]*k));
        }
        if(s[i]>0) goods.push_back(make_pair(v[i]*s[i],w[i]*s[i]));
    }
    
    for(auto god:goods){
        for(int j=m;j>=god.first;j--){
            f[j]=max(f[j],f[j-god.first]+god.second);
        }
    }
    
    
    cout<<f[m]<<endl;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值