深一
码龄6年
关注
提问 私信
  • 博客:105,460
    105,460
    总访问量
  • 30
    原创
  • 2,348,159
    排名
  • 109
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2018-11-30
博客简介:

weixin_43879302的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    442
    当月
    6
个人成就
  • 获得143次点赞
  • 内容获得80次评论
  • 获得799次收藏
  • 代码片获得576次分享
创作历程
  • 2篇
    2024年
  • 5篇
    2023年
  • 6篇
    2022年
  • 8篇
    2021年
  • 8篇
    2020年
  • 2篇
    2019年
成就勋章
TA的专栏
  • 优化
    2篇
  • 贝塞尔曲线
    2篇
  • 多机器人路径规划
    2篇
  • 运动控制
    1篇
  • 差分轮移动机器人
    2篇
  • 差动式机器人
    3篇
  • 栅格地图
    1篇
  • 车辆
    2篇
  • 路径优化
    3篇
  • casadi
    2篇
  • 时间最优控制
    1篇
  • 五次曲线
    1篇
  • 路径规划
    1篇
  • Hybird A*
    1篇
  • 最优控制
    1篇
  • 非线性求解器
    1篇
  • MPC控制
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

C/C++调用matlab

使用C/C++调用Matlab程序
原创
发布博客 2024.01.10 ·
998 阅读 ·
8 点赞 ·
0 评论 ·
12 收藏

机械臂运动学逆解(牛顿法)

使用牛顿法求解6轴串联机械臂的运动学逆解,并用matlab进行验证
原创
发布博客 2024.01.06 ·
2497 阅读 ·
23 点赞 ·
0 评论 ·
35 收藏

工业6轴机械臂运动学逆解(解析解)

6轴工业机械臂运动学逆解(解析解)
原创
发布博客 2023.12.20 ·
5148 阅读 ·
21 点赞 ·
0 评论 ·
78 收藏

windows下使用FCL(Flexible-collision-library)

FCL做为一款开源的碰撞检测库,支持多种基础的几何体,及支持C++和python,在windows和linux平台均可以使用。是一款计算高效的碰撞检测工具。在机械臂规划控制框架moveit中做为基础的碰撞检测算法。FCL库(The Flexible Collision Library)主要的功能有:1、碰撞检测:检测两个模型是否重叠,以及(可选)所有重叠的三角形。2、距离计算:计算一对模型之间的最小距离,即最近的一对点之间的距离。3、公差验证:确定两个模型是否比公差距离更近或更远。
原创
发布博客 2023.11.06 ·
2224 阅读 ·
1 点赞 ·
6 评论 ·
15 收藏

windows下C++管道通信

在windows下,通过Vs Studio创建CMake工程,进行管道通信测试
原创
发布博客 2023.09.20 ·
514 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

使用Vs Studio和Cmake生成C++库

在windows下使用Vs Studio和Cmake生成C++库
原创
发布博客 2023.07.25 ·
376 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

LQR笔记

在现代控制理论中,LQR(Linear Quadratic Regulator)通过引入最优化的思想,结合系统的状态方程,得出为让系统状态达到期望的位置。
原创
发布博客 2023.07.05 ·
358 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

微信小程序和ros2进行通信

;ROS2做为一款优秀的机器人操作系统软件,其搭载了丰富的机器人平台,是目前机器人领域应用最多的软件。微信做为一个大型社交软件,应用非常广泛,其中的小程序直接通过扫二维码进行加载,使用起来非常方便快捷。为了让手机端能够对机器人进行操作,于是通过微信小程序与ROS2通信的方式将两者联系在一起。
原创
发布博客 2022.12.30 ·
1670 阅读 ·
0 点赞 ·
2 评论 ·
11 收藏

【贝塞尔曲线拟合】

贝塞尔曲线拟合
原创
发布博客 2022.10.15 ·
1006 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

差速轮平滑运动控制

移动机器人运动控制
原创
发布博客 2022.07.26 ·
1145 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

webots导入solidworks模型

webots导入solidworks模型准备环境在solidworks下编辑urdf模型手动修改urdf模型使用python将urdf模型转为proto模型  webots作为一款开源的仿真软件,在机器人仿真中有较多的应用,通常机器人模型以.proto格式的文件保存,无法直接打开solidworks文件。需要先将准备环境SolidWorks转URDF的插件,叫做sw_urdf_exporter,下载地址;python3程序包urdf2webots;在solidworks下编辑urdf模型手动
原创
发布博客 2022.05.27 ·
2816 阅读 ·
2 点赞 ·
0 评论 ·
31 收藏

python3调用C++

python3调用C++
原创
发布博客 2022.05.01 ·
2740 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

降低栅格地图存储空间

减少栅格地图存储空间
原创
发布博客 2022.04.03 ·
1087 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

直观地理解车辆的运动控制

直观地理解车辆的运动控制  运动控制的目的是使车辆沿着一条给定的路线运行,尽可能保证车辆和路线的横向偏移量尽可能小,且运行速度越快越好。以下将以差速轮和阿克曼结构的车通俗地介绍如何对车辆进行控制。  车辆的运动控制可以理解成踩油门和打方向盘的过程,车辆的线速度与油门的大小相关,车辆的角速度与方向盘的角度和线速度有关。  正常开车的情况下,当前方道路比较平滑时且车辆处于路的正中央,就可以考虑加大油门了,车辆的速度也就越来越快(当然实际情况要复杂得多,路面情况、车辆状态、其它车辆等都会影响油门的大小)。车
原创
发布博客 2021.11.28 ·
798 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

多机器人协同运行

多机器人协同运行   在实际环境中,通常会有多个移动机器人完成一个或多个任务。为了实现这个目标,可以使用多机路径规划加上一个多机器人协同运行控制器。适用条件多机器人在有向或无向图下进行路径规划;多机器人全局路径规划,如CBS;操作过程注意事项...
原创
发布博客 2021.11.04 ·
4237 阅读 ·
6 点赞 ·
1 评论 ·
31 收藏

protobuf和socket通信简单实例

protobuf和socket通信简单实例  protobuf是 Google 公司内部的混合语言数据标准,可以用来定义通信的协议,由于其有序列化和反序列化的操作,减小了存储或通信的数据量,从而达到高效运行的目的。  此实例在ubuntu18.04下正常运行,其它操作系统没有经过测试,无法保证正常运行。protobuf安装  protobuf的下载地址,如图1所示的安装包,安装可参考官网官网安装说明。 图1   下载完毕解压后,在主文件夹
原创
发布博客 2021.07.29 ·
1707 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

CBS多机器人路径规划

CBS多机器人路径规划
原创
发布博客 2021.06.08 ·
11151 阅读 ·
26 点赞 ·
14 评论 ·
141 收藏

梯度下降法平滑路径

梯度下降法平滑路径  在实际过程中,为了使机器人能够在环境中流畅地运行,就需要一条平滑的路径,而普通的路径搜索算法Dijkstra、A*、rrt等无法满足要求,在此基础上,可以通过一些优化算法平滑路径,如凸优化的方法,但凸优化的方法构造起来比较麻烦,而且操作性较差(如对路径曲率进行约束),对于太长、障碍物比较多的环境,计算的实时性比较差。本文将使用梯度下降的方法将一条曲折的初始路径优化成平滑的无碰撞路径。整体思路  算法的整体思路如下图所示。初始路径规划可以使用A*算法,将路径离散成等距的离散点是为优
原创
发布博客 2021.04.26 ·
4222 阅读 ·
6 点赞 ·
2 评论 ·
65 收藏

梯度法求解优化问题

梯度法求解优化问题通常优化问题非常复杂,难以求解出解析解,但在实际应用过程中, 解能满足一定精度,满足工程要求即可。优化方程的形式和求解方法众多,本文将以梯度法求解静态无约束目标函数,如式(1)所示,并通过一些实例更好地理解这个方法。J=ϕ[x(tf),tf]+∫t0tfL[x(t),u(t),t]dtx˙(t)=f[x(t),u(t),t]x(t0)=x0(1)\begin{array}{l}J= \phi [x(t_f), t_f] + \int _{t_0} ^ {t_f} L[x(t),
原创
发布博客 2021.03.26 ·
1443 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

凸优化在路径优化中的应用

凸优化在路径优化中的应用总体思路生成凸多边形总体思路凸优化虽然做为优化中的一个特例,但非常多的工程问题都可以转变为凸优化问题,因此应用需求比较多,被大量学者研究,成果颇丰。由于本文重点在应用,不讲解凸优化,如果感兴趣可以参考书籍《Convex Optimization》。使用凸优化对路径进行优化的过程可以如下:Created with Raphaël 2.2.0开始生成初始路径生成凸多边形区域构造优化问题使用求解器求解优化问题结束生成初始路径是为了更容易生成凸多边形,而凸多边形则是为了给优化的目标
原创
发布博客 2021.02.24 ·
2933 阅读 ·
4 点赞 ·
1 评论 ·
13 收藏
加载更多