本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入、数据清洗、预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作。
生成数据表
常见的生成数据表的方法有两种,第一种是导入外部数据,第二种是直接写入数据。
Excel中的“文件”菜单中提供了获取外部数据的功能,支持数据库和文本文件和页面的多种数据源导入。
Python支持从多种类型的数据导入。在开始使用Python进行数据导入前需要先导入 numpy 和pandas库
import numpy as np import pandas as pd
导入外部数据
df=pd.DataFrame(pd.read_csv('name.csv',header=1)) df=pd.DataFrame(pd.read_Excel('name.xlsx'))c
里面有很多可选参数设置,例如列名称、索引列、数据格式等
直接写入数据
df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006], "date":pd.date_range('20130102', periods=6), "city":['Beijing ', 'SH', ' guangzhou ', 'Shen zhen', 'shanghai', 'BEIJING '], "age":[23,44,54,32,34,32], "category":['100-A','100-B','110-A','110-C','2 10-A','130-F'], "price":[1200,np.nan,2133,5433,np.nan,4432]}, columns =['id','date','city','category','age', 'price'])
数据表检查
数据表检查的目的是了解数据表的整体情况,获得数据表的关键信息、数据的概况,例如整个数据表的大小、所占空间、数据格式、是否有 空值和重复项和具体的数据内容,为后面的清洗和预处理做好准备。
1.数据维度(行列)
Excel中可以通过CTRL+向下的光标键,和CTRL+向右的光标键 来查看行号和列号。Python中使用shape函数来查看数据表的维度,也就是行数和列数。
df.shape
2.数据表信息
使用info函数查看数据表的整体信息,包括数据维度、列名称、数据格式和所占空间等信息。#数据表信息
df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 6 entries, 0 to 5 Data columns (total 6 columns): id 6 non-null int64 date 6 non-null datetime64[ns] city 6 non-null object category 6 non-null object age 6 non-null int64 price 4 non-null float64 dtypes: datetime64[ns](1), float64(1), int64(2), object(2) memory usage: 368.0+ bytes
3.查看数据格式
Excel中通过选中单元格并查看开始菜单中的数值类型来判断数 据的格式。Python中使用dtypes函数来返回数据格式。
Dtypes是一个查看数据格式的函数,可以一次性查看数据表中所 有数据的格式,也可以指定一列来单独查看
#查看数据表各列格式 df.dtypes id int64 date datetime64[ns] city object category object age int64 price float64 dtype: object #查看单列格式 df['B'].dtype dtype('int64')
4.查看空值
Excel中查看空值的方法是使用“定位条件”在“开始”目录下的“查找和选择”目录.
Isnull是Python中检验空值的函数
#检查数据空值 df.isnull()
#检查特定列空值 df['price'].isnull()
5.查看唯一值
Excel中查看唯一值的方法是使用“条件格式”对唯一值进行颜色 标记。
Python中使用unique函数查看唯一值。
#查看city列中的唯一值 df['city'].unique() array(['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', ' BEIJING '], dtype=object)
6.查看数据表数值
Python中的Values函数用来查看数据表中的数值
#查看数据表的值 df.values
7.查看列名称
Colums函数