169.多数元素(分治)
给定一个大小为 n 的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。
你可以假设数组是非空的,并且给定的数组总是存在多数元素。
示例 1:
输入:nums = [3,2,3]
输出:3
示例 2:
输入:nums = [2,2,1,1,1,2,2]
输出:2
提示:
n == nums.length
1 <= n <= 5 * 104
-109 <= nums[i] <= 109
/**
* @param {number[]} nums
* @return {number}
*/
var majorityElement = function(nums) {
const getCount = (start, end, num) => { // 统计start到end之间num的数量
let count = 0;
for (let i = start; i <= end; i++) {
if (nums[i] === num) count++;
}
return count;
};
const getMajority = (start, end) => {
if (start === end) return nums[start];
// 拆分成更小的区间
let mid = Math.floor((start + end) / 2);
let left = getMajority(start, mid);
let right = getMajority(mid + 1, end);
if (left === right) return left;
// 统计区间内left的个数
let leftCount = getCount(start, end, left);
// 统计区间内right的个数
let rightCount = getCount(start, end, right);
// 返回left和right中个数多的那个
return leftCount > rightCount ? left : right;
};
return getMajority(0, nums.length - 1);
};
70.爬楼梯(动态规划)
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。 - 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
提示:
1 <= n <= 45
/**
* @param {number} n
* @return {number}
*/
var climbStairs = function(n) {
let dp = [1, 1]
for (let i=2;i<=n;i++) {
dp[i] = dp[i-1] + dp[i-2]
}
return dp[n]
};
198.打家劫舍(动态规划)
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
示例 1:
输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。
提示:
1 <= nums.length <= 100
/**
* @param {number[]} nums
* @return {number}
*/
var rob = function(nums) { [1,2,3]
let len = nums.length
if (len === 0) return 0
let dp = [0, nums[0]]
for (let i=2;i<=len;i++) {
dp[i] = Math.max( dp[i-1], dp[i-2] + nums[i-1])
}
return dp[len]
};