《windows deepseek R1与deepseek janus pro本地部署 》
deepseek R1
deepseek R1包含大小不一的模型如下
https://ollama.com/library/deepseek-r1
我的GPU是16G显存,下载14b模型。
流程如下: (科学上网)
1. 下载Ollama,从官网下载。(安装完成后,在CMD下使用ollama --version,测试安装成功)
2. ollama run deepseek-r1:14b
3. 安装docker
4. docker 安装 Open Web UI
docker run -d -p 3000:8080 \
--add-host=host.docker.internal:host-gateway \
-v open-webui:/app/backend/data \
--name open-webui \
--restart always \
ghcr.io/open-webui/open-webui:main
5. 打开docker 可以看到open web UI正在运行, 点击小红框内的3000:8000,自动打开浏览器
测试一下:
deepseek janus pro
有两个功能,识别图像信息。 另一个是文生图。
conda create -n janus python=3.10 -y # (后续conda activate janus激活环境)
git clone https://github.com/deepseek-ai/Janus.git
cd Janus
pip install -e .
pip install gradio
pip uninstall torch torchvision torchaudio -y
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
#安装合适版本的torch, cuda版本,torch版本对应上。
GPU版本:
6. python demo/app_januspro.py --device cuda
(此处会下载7B模型,可以通过更改次文件,换成1B模型测试,可能需要科学上网)
.
7. http://127.0.0.1:7860
界面如下
结果如下:
从网络上下载一份病例,可以比较准确的识别出问题。
再将这些信息导入deepseek R1满血版。结合图转文字,和deepseek R1。
文本转图片:
受限于GPU大小,使用1B的模型,并没有生成理想的图片。 满血版本地部署需要A100 80G版本
关注微信公众号《开源生信》