无桨靠浪
码龄6年
关注
提问 私信
  • 博客:15,153
    15,153
    总访问量
  • 11
    原创
  • 1,606,083
    排名
  • 6
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:重庆市
  • 加入CSDN时间: 2018-12-02
博客简介:

weixin_43910854的博客

查看详细资料
个人成就
  • 获得11次点赞
  • 内容获得17次评论
  • 获得93次收藏
  • 代码片获得132次分享
创作历程
  • 11篇
    2020年
成就勋章
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络自然语言处理数据分析
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

使用yolo3自己训练的模型加上deep_sort实现多目标跟踪

本文章用于记录自己多目标跟踪调试代码的过程。我的部分环境如下python 3.6.10keras 2.3.1scikit-learn 0.19.0tensorflow 1.14.0opencv 3.3.11.使用yolo3模型训练自己的数据集可以参照训练自己的yolo3模型用于识别机动车及部分道路信息或者训练自己的yol
原创
发布博客 2020.07.23 ·
2960 阅读 ·
6 点赞 ·
15 评论 ·
48 收藏

训练自己的yolo3模型用于识别机动车及部分道路信息

本文主要记录自己训练yolo3模型的整个过程,大部分参考Keras/Tensorflow+python+yolo3训练自己的数据集1.数据采集与处理数据采集使用python的opencv库将训练的视频的每一帧截取保存为一张图片,最后共计1782张图片作为训练数据,如图所示。数据处理使用lableimg软件对每一张图片中的机动车、红绿灯、横道线、道路行驶箭头、车牌进行标注,如图所示lableimg具体操作参照labelimg使用教程注意:标注的同类别需要相同的命名,比如机动车命名为car
原创
发布博客 2020.07.23 ·
1185 阅读 ·
1 点赞 ·
0 评论 ·
10 收藏

分类算法比较

相同的数据集用不同的模型进行训练最后可视化,观察分类的结果读取数据data = pd.read_csv(‘G:\Machine Learning\data\Social_Network_Ads.csv’)以Age.EstimatedSalary两列作为x,以Purchased作为yx = data.loc[:,'Age':'EstimatedSalary'].valuesy = data.loc[:,'Purchased'].values划分数据集from sklearn.model_se
原创
发布博客 2020.07.02 ·
752 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

使用线性回归模型SGDRegressor进行预测

读入数据定义特征与目标值data_x = data.iloc[:,1:-1]data_y = data[['MPG']]划分数据集from sklearn.model_selection import train_test_splitx_train ,x_test, y_train, y_test = train_test_split(data_x, data_y, test_si...
原创
发布博客 2020.05.01 ·
4085 阅读 ·
2 点赞 ·
1 评论 ·
20 收藏

Word2Vec的简单运用_2

Word2Vec训练模型计算词向量加载text文件,对文件里面的文字进行分词,先进行停用词的处理,然后计算词频,用Word2Vec训练模型计算词向量,最后词向量可视化。加载停用词with open('stopwords.txt', encoding='utf-8') as f: line_list = f.readlines() stopword_list = [k.stri...
原创
发布博客 2020.04.22 ·
299 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

关于Word2Vec的简单理解

关于Word2Vec的简单理解Word2vec中有两个方法,第一个方法是CBOW用上下文预测当前词,第二个方法是Skip-gram用当前词预测上下文。两个方法都有三层的神经网络如图,左边是CBOW框架,输入是词的上下文,中间层是对每个词向量求合,第三层是输出的预测词的词向量。右边是Skip-gram框架,输入是当前词,中间层相当于输入层的投影,输出层是预测的当前词的上下文。基于Hierar...
原创
发布博客 2020.04.20 ·
321 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

梯度下降法优化

梯度下降法优化定义一个损失函数J(θ0, θ1),用梯度下降法最小化J(θ0, θ1)的值这是梯度下降法的算法定义θj := θj − α * (d / dθj) * J(θ0, θ1)其中:=表示赋值,α是学习率代表梯度下降法计算时迈出多大的步子(d / dθj) * J(θ0, θ1)这是一个导数项d代表求导公式里面的那个符号。在计算时需要同时更新θ0和θ1,算法表示为:temp0 ...
原创
发布博客 2020.04.19 ·
194 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Word2Vec的简单运用

Word2Vec的简单运用以爬取的电影评论为例,主体思想是先用jieba对每段评论进行分词jieba.lcut(data),每处理一段评论用list.append()方法一个个存入形成一个二维数组import jiebaraw_word_list = []with open('pinglun.txt','r',encoding = 'utf-8') as f: line = f.r...
原创
发布博客 2020.04.14 ·
637 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

tensorboard实现计算图谱可视化

tensorboard实现计算图谱可视化tensorflow2.0中tensorboard是默认安装好了的在代码中定义log_dir文件夹命名为fit加当地时间 ,定义TensorBoard对象。log_dir="logs\\fit" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")tensorboard_callback = tf.k...
原创
发布博客 2020.03.31 ·
318 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tensorflow保存和加载模型

tensorflow保存和加载模型构建手写数字识别神经网络的时候对输入输出值设置name分别为input和outputx_data = tf.placeholder(tf.float32, [None, 784], name = 'input') # 模型输入节点,name = 'input'y_data = tf.placeholder(tf.float32, [None, 10])y...
原创
发布博客 2020.03.23 ·
204 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

全连接神经网络中relu和softmax两个激活函数以及损失函数的小理解

全连接神经网络中relu和softmax两个激活函数以及损失函数的小理解机器学习课上通过keras构造了一个全连接的神经网络机器学习课上通过keras构造了一个全连接的神经网络这次实验用的是keras官方下载的数据集,目的是把给出的数据分为十类,每个数据是一个二维数组,标签是一个0-10的数字。下面是构建的神经网络model = keras.models.Sequential()mode...
原创
发布博客 2020.03.18 ·
4157 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏