MODUS 1.8 为RPS何最佳拟合算法选择特征和约束

用于RPS和最佳拟合对准的LOCATE命令是依靠数学优化算法的,可以减少沿着指定向量的名义值和实际值之间的位置误差。

请确保最优方案

在基准计算中的第一个操作,是一个大约的对准,它计算出替代的旋转组件以及粗略的移动,从而调整数据,使得算法可以成功。这是因为,在计算变换时,如果这个变换在任何单独轴内具有一个最大大约30度角度,或者在任何两个轴有最大20度角时,后者在所有三轴具有最大10度角时,则对准是受限制的(移动是不受限的)。

如果在这个初始对准之后,数值依旧在这些约束以外,则,算法可能会成功但却会返回一个并非最佳的解决方案(在数学用语中,即为解决方案聚集为一个本地最小值)。在理想情况下,已测量的特征应该被间隔成尽可能的广泛:更普遍的,将测量特征分隔开始很重要的,它使得任何测量位置误差相较于特征间距在比例上是很小的。

如果真实数值采集不准确,那么在手动执行初始化设置时这种情况不可避免,当执行一个RPS定位,而这个定位中有6个约束条件和6个自由角度,则,这个缺乏收敛的最优算法可能还会发生。在这种情况下,对准应该被重复,或者在CNC模式下重复(在CNC机器上),或者使用目标-驱使测量(在人工系统中)。

约束的选择

所选的,应用于特征的约束,对于确保计算最佳对准也是很关键的。从算数角度而言,拟合的自由度的每个角度都必须有至少一个约束以便实现一个解决方案,但是它们仍需要被谨慎的选取。考虑将被用于RPS-风格对准的三个共面圆的测量。
在这里插入图片描述
如果约束条件选择如下:

例1

CIR001 - xyz

CIR002 - yz

CIR003 - z

对准很可能趋于最佳解决方案。然而,如果下面的约束被选中了:

例2

CIR001 - xyz

CIR002 - xz

CIR003 - z

或者,更差:

例3

CIR001 - y

CIR002 - xyz

CIR003 - yz

然后,对准很可能趋于本地最小值。基础数学要求,如果两个特征将在相同方向起着约束的作用,那么,它们之间的直线不应该与那个方向平行。在上面的实例中,圆CIR001和CIR002之间的替代,几乎是在x方向的;而CIR002和CIR003之间的替代只在y方向,即,各自沿着示例2和3中的约束方向。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页