原题
令
P
i
P_i
Pi 表示第 i 个素数。现任给两个正整数 M≤N≤
1
0
4
10^4
104
,请输出
P
M
P_M
PM 到
P
N
P_N
PN 的所有素数。
输入格式
输入在一行中给出 M 和 N,其间以空格分隔。
输出格式
输出从 P M P_M PM 到 P N P_N PN 的所有素数,每 10 个数字占 1 行,其间以空格分隔,但行末不得有多余空格。
输入样例
5 27
输出样例
11 13 17 19 23 29 31 37 41 43
47 53 59 61 67 71 73 79 83 89
97 101 103
my answer
思路
利用1007题的判断素数的方法去判断一个数是否是素数,再用一个变量times去记录当前已经判断出来的素数的个数,当times >= M的时候,开时输出对应的素数,直到times <= N。
import math
# 判断是否是素数
def is_prime(n, prime_list):
if n < 3:
return n > 1
if n == 3:
prime_list.append(n)
return True
if n % 6 != 1 and n % 6 != 5:
return False
up_limit = int(math.sqrt(n)) + 1
for i in prime_list:
if i > up_limit:
break
if n % i == 0:
return False
prime_list.append(n)
return True
input_str = input()
M = int(input_str.split()[0])
N = int(input_str.split()[1])
prime_list = []
i = 2
times = 0
while True:
if is_prime(i, prime_list):
times += 1 # 如果是素数,times就加一
if times >= M and times < N:
if (times-M+1) % 10 != 0: # 每十个为一行
print(i, end=' ')
else:
print(i)
elif times == N:
print(i)
break
i += 1
本文介绍了一种使用已知素数列表来判断新数是否为素数的算法,并通过实例展示了如何输出指定范围内的素数。该算法首先判断一个数是否小于3,然后检查其是否能被6除后余1或5,最后利用已知素数进行试除法验证。

217

被折叠的 条评论
为什么被折叠?



