原题
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式
输入给出一个 (0, 1 0 4 10^4 104) 区间内的正整数 N。
输出格式
如果 N 的 4 位数字全相等,则在一行内输出N - N = 0000;否则将计算的每一步在一行内输出,直到6174作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。
输入样例1:
6767
输出样例1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例2:
<2222

本文介绍了一道关于'数字黑洞'(Kaprekar常数)的编程题,通过Python来演示到达6174的过程。题目要求从给定的4位正整数开始,不断按非递增和非递减排序后相减,直至得到6174。文章提供了解题思路和避免陷阱的方法。
最低0.47元/天 解锁文章
532

被折叠的 条评论
为什么被折叠?



