用少样本finetune

How Many Data Points is a Prompt Worth?
将与当前任务相关的提示信息(prompt)引入模型。
论文证明这个< MASK >方法比模型加一个线性层做分类任务性能好。
这个方法比传统任务(例如:加一个线性层做分类任务)用的样本少,为几分之一。
针对任务的不同,只需用到几百到几千的样本。

这篇文章还关注了文本蕴含、多选阅读理解、指代销歧等共六个任务。
(1)判断题的阅读理解任务
在这里插入图片描述
(2)文本蕴含任务,可以将前提 (premise, p) 与假设 (hyphothesis, h) 通过提示信息整合
在这里插入图片描述
(3)对于指代销歧任务,可以将句子S 、带标记的介词p 与名词 n通过提示信息整合
在这里插入图片描述
(4)其他任务类似,见论文。

实验结果:
在这里插入图片描述
在这里插入图片描述

  1. 模型通过预测 < MASK > 属于描述集合中的哪种,以此完成任务。如果将这里改为不带语义的单纯的分类,性能也会有所下降。
  2. 作者为每个任务都提供了多种整合提示信息的方式,但是发现,不同方式的区别对性能影响甚微

更少的少样本应该怎么做?
在这里插入图片描述
表中列举了四种情况:

  • Data-Rich Supervised 表示传统有大量数据的有监督学习。
  • Multi-Distribution Few-Shot 表示原始的小样本学习情景,即在大量 n-way k-shot 上进行训练。由于每个 task 都包含不同的数据分布,因此这相当于在不同的分布中训练,在新的分布中使用模型。
  • Tuned Few-Shot 表示从 GPT3 开始的,用 prompt 的方式对预训练模型微调。

True Few-Shot 就是本文提出的啦!
本文认为,对于小样本学习,既不应该有其它分布的数据辅助、也不应该有很多训练数据,更不应该有很多验证集的数据。因为这些数据全都是需要标注的!

博客:恕我直言,很多小样本学习的工作就是不切实际的
论文:True Few-Shot Learning with Language Models

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值