使用飞桨PaddleHub实现将视频动作转化为皮影戏

本文介绍了如何利用飞桨PaddlePaddle的PaddleHub和骨骼关键点检测模型,将视频中的人物动作转化为皮影戏效果。通过剪切视频帧,检测关键骨骼点,拼接皮影素材,最后合成视频,实现皮影随人体动作运动。
摘要由CSDN通过智能技术生成

前言

飞桨(PaddlePaddle)是集深度学习核心框架、工具组件和服务平台为一体的技术先进、功能完备的开源深度学习平台,已被中国企业广泛使用,深度契合企业应用需求,拥有活跃的开发者社区生态。提供丰富的官方支持模型集合,我们这里将要使用到其中的骨骼节点检测模型,通过PaddleHub提供的人体骨骼关键点检测预训练模型,我们就可以快速实现皮影戏的效果。
这里说一下这个项目的大体实现流程,先将现有的视频按帧剪切为一张张的图片,并保存到本地,使用PaddleHub提供的人体骨骼关键点检测预训练模型来获取每张图片里人物作出动作时的骨骼关键节点模型,例如左手、左脚、右手、右脚、躯干以及头颅的位置以及方向,在PaddleHub获取到人体骨骼关键点模型之后,就可以对这些关键点进行连接,从而形成了人体姿态。接着我们将皮影的身体躯干素材拼接到模型上,这就完成了将图片里的人物动作转化为皮影戏。
将每张图片都这样操作,保存拼接之后的的图片,将所有的图片合成为视频即可让皮影跟随人体姿态进行运动,就达到“皮影戏”的效果。
皮影素材
在这里插入图片描述项目实现过程中使用的Python版本为3.7.0,其他依赖库的版本分别为cv2 4.5.1.48、matplotlib 2.2.2、numpy 1.19.3、tensorflow 2.4.1。

具体流程

一、安装依赖库以及模型

安装PaddlePaddle
windows cpu版本快速安装

python -m pip install paddlepaddle==2.0.2 -i https://mirror.baidu.com/pypi/simple

其他版本安装请参考官网https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/windows-pip.html
在这里插入图片描述

安装PaddleHub

pip install PaddleHub

导入人体骨骼关键节点检测模型

hub install human_pose_estimation_resnet50_mpii==1.1.1

二、检测是否安装成功

检测图片骨骼节点

import os
import cv2
import paddlehub as hub
import matplotlib.pyplot as plt
from matplotlib.image import imread
import numpy as np


def show_img(img_path, size=8):
    '''
        文件读取图片显示
    '''
    im = imread(img_path)
    plt.figure(figsize=(size, size))
    plt.axis("off")
    plt.imshow(im)


def img_show_bgr(image, size=8):
    '''
        cv读取的图片显示
    '''
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    plt.figure(figsize=(size, size))
    plt.imshow(image)

    plt.axis("off")
    plt.show()


pose_estimation = hub.Module(name="human_pose_estimation_resnet50_mpii")
result = pose_estimation.keypoint_detection(paths=['test4.jpg'], visualization=True, output_dir="work/output_pose/")
print(result)

在这里插入图片描述在这里插入图片描述

拼接皮影素材
这一步需要用到皮影戏的素材,请移步到文末下载

import os
import cv2
import paddlehub as hub
import matplotlib.pyplot as plt
from matplotlib.image import imread
import numpy as np

def show_img(img_path, size=8):
    '''
        文件读取图片显示
    '''
    im = imread(img_path)
    plt.figure(figsize=(size,size))
    plt.axis("off")
    plt.imshow(im)
def img_show_bgr(image,size=8):
    '''
        cv读取的图片显示
    '''
    image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
    plt.figure(figsize=(size,size))
    plt.imshow(image)
    
    plt.axis("off")
    plt.show() 

pose_estimation = hub.Module(name="human_pose_estimation_resnet50_mpii")
##result = pose_estimation.keypoint_detection(paths=['test4.jpg'], visualization=True, output_dir="work/output_pose/")
##print(result)

def get_true_angel(value):
    '''
    转转得到角度值
    '''
    return value/np.pi*180

def get_angle(x1, y1, x2, y2):
    '''
    计算旋转角度
    '''
    dx = abs(x1- x2)
    dy = abs(y1- y2)
    result_angele = 0
    if x1 == x2:
        if y1 > y2:
            result_angele = 180
    else:
        if y1!=y2:
            the_angle = int(get_true_angel(np.arctan(dx/dy)))
        if x1 < x2:
            if y1>y2:
                result_angele = -(180 - the_angle)
            elif y1<y2:
                result_angele = -the_angle
            elif y1==y2:
                result_angele = -90
        elif x1 > x2:
            if y1>y2:
                result_angele = 180 - the_angle
            elif y1<y2:
                result_angele = the_angle
            elif y1==y2:
                result_angele = 90
    
    if result_angele<0:
        result_angele = 360 + result_angele
    return result_angele

def rotate_bound(image, angle, key_point_y):
    '''
    旋转图像,并取得关节点偏移量
    '''
    #获取图像的尺寸
    (h,w) = image.shape[:2]
    #旋转中心
    (cx,cy) = (w/2,h/2)
    # 关键点必须在中心的y轴上
    (kx,ky) = cx, key_point_y
    d = abs(ky - cy)
    
    #设置旋转矩阵
    M = cv2.getRotationMatrix2D((cx,cy), -angle, 1.0)
    cos = np.abs(M[0,0])
    sin = np.abs(M[0,1])
    
    # 计算图像旋转后的新边界
    nW = int((h*sin)+(w*cos))
    nH = int((h*cos)+(w*sin))
    
    # 计算旋转后的相对位移
    move_x = nW/2 + np.sin(angle/180*np.pi)*d 
    move_y = nH/2 - np.cos(angle/180*np.pi)*d
    
    # 调整旋转矩阵的移动距离(t_{x}, t_{y})
    M[0,2] += (nW/2) - cx
    M[1,2] += (nH/2) - cy

    return cv2.warpAffine(image,M,(nW,nH)), int(move_x), int(move_y)

def get_distences(x1, y1, x2, y2):
    return ((x1-x2)**2 + (y1-y2)**2)**0.5
def append_img_by_sk_points(img, append_img_path, key_point_y, first_point, second_point, append_img_reset_width=None,
                                        append_img_max_height_rate=1, middle_flip=False, append_img_max_height=None):
    '''
    将需要添加的肢体图片进行缩放
    '''
    append_image = cv2.imdecode(np.fromfile(append_img_path, dtype=np.uint8), cv2.IMREAD_UNCHANGED)

    # 根据长度进行缩放
    sk_height = int(get_distences(first_point[0], first_point[1], second_point[0], second_point[1])*append_img_max_height_rate)
    # 缩放制约
    if append_img_max_height:
        sk_height = min(sk_height, append_img_max_height)

    sk_width = int(sk_height/append_image.shape[0]*append_image.shape[1]) if append_img_reset_width is None else int(append_img_reset_width)
    if sk_width <= 0:
        sk_width = 1
    if sk_height <= 0:
        sk_height = 1

    # 关键点映射
    key_point_y_new = int(key_point_y/append_image.shape[0]*append_image.shape[1])
    # 缩放图片
    append_image = cv2.resize(append_image, (sk_width, sk_height))

    img_height, img_width, _ = img.shape
    # 是否根据骨骼节点位置在 图像中间的左右来控制是否进行 左右翻转图片
    # 主要处理头部的翻转, 默认头部是朝左
    if middle_flip:
        middle_x = int(img_width/2)
        if first_point[0] < middle_x and second_point[0] < middle_x:
            append_image = cv2.flip(append_image, 1)

    # 旋转角度
    angle = get_angle(first_point[0], first_point[1], second_point[0], second_point[1])
    append_image, move_x, move_y = rotate_bound(append_image, angle=angle, key_point_y=key_point_y_new)
    app_img_height, app_img_width, _ = append_image.shape
    
    zero_x = first_point[0] - move_x
    zero_y = first_point[1] - move_y

    (b, g, r) = cv2.split(append_image) 
    <
【资源说明】 基于PaddleHub实现一键图片动漫风格化源码+详细注释-课程作业.zip 1.项目介绍 小白也能快速上手的基于PaddleHub实现一键动漫风格化 2.安装第三方库 # 参考paddlepaddle官网安装 pip install paddlepaddle-gpu==2.2.1.post112 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html pip install --upgrade paddlehub -i https://mirror.baidu.com/pypi/simple pip install opencv-python tqdm moviepy 3.项目使用 图片文件夹的Python脚本 python style_transfer_demo.py --input_path images --output_path output --model_index 0 --use_gpu True 图片文件的Python脚本 python style_transfer_demo.py --input_path images/test.jpg --output_path output --model_index 0 --use_gpu True 视频文件的Python脚本 python style_transfer_demo.py --input_path video/test.mp4 --output_path output --model_index 0 --use_gpu True 对应参数介绍: --input_path: 输入文件的路径,默认为test.jpg,其中可以是图片文件夹,图片文件,也可以是视频 图片:['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] 视频:['mp4','mov', 'avi', 'flv', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] --output_path: 输出文件的路径,默认输出文件的路径为output --model_index:动漫风格化模型的序号,默认为0,也就是'animegan_v2_hayao_99',模型列表:['animegan_v2_hayao_99','animegan_v2_shinkai_53','animegan_v2_hayao_64','animegan_v2_shinkai_33', 'animegan_v1_hayao_60','animegan_v2_paprika_74','animegan_v2_paprika_97','animegan_v2_paprika_98','animegan_v2_paprika_54'] --use_gpu: 指的是 要不要开启GPU,默认为True,默认开启GPU 4.参考链接 PaddleHub官网 AnimeGANv2 AnimeGAN动漫化模型一键应用(含动漫化小程序体验) PaddleHub一键视频动漫化 AI创造营——AnimeGAN视频动漫化一键生成 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沈世安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值