球场恶汉
码龄6年
关注
提问 私信
  • 博客:55,711
    问答:1,575
    57,286
    总访问量
  • 8
    原创
  • 1,752,880
    排名
  • 9
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2018-12-02
博客简介:

球场恶汉的博客

查看详细资料
个人成就
  • 获得85次点赞
  • 内容获得45次评论
  • 获得190次收藏
创作历程
  • 8篇
    2019年
成就勋章
TA的专栏
  • 语义分割
    1篇
  • 机器学习算法
  • Pytorch
    2篇
  • 损失函数
    1篇
  • 深度学习
    1篇
  • C++
    1篇
  • Linux
  • tensorboard
    1篇
  • docker
    2篇
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

docker 多线程(multiprocessing)报错:leaked semaphores 以及 bus error (core dumped)

在docker容器中运行多线程程序时,出现了bus error以及leaked semaphores 警告:/opt/conda/lib/python3.6/multiprocessing/semaphore_tracker.py:143: UserWarning: semaphore_tracker: There appear to be 3 leaked semaphores to clea...
原创
发布博客 2019.09.18 ·
11929 阅读 ·
5 点赞 ·
1 评论 ·
10 收藏

通过端口映射在本地访问服务器(docker容器)上的tensorboard可视化结果

很多时候我们使用的训练资源是学校或公司的服务器,这些服务器往往没有给使用者提供图形界面,我们通过ssh访问,此时要想使用tensorboard来可视化我们的训练过程就比较麻烦了。tensorboard默认使用是通过一个端口来访问可视化结果,所以可以通过端口映射来解决这个问题。1、服务器到本地的端口映射ssh -L 6006:127.0.0.1:6666 username@serverIP...
原创
发布博客 2019.07.24 ·
3624 阅读 ·
6 点赞 ·
1 评论 ·
10 收藏

为什么拷贝构造函数使用的是引用传递而不是值传递?

简单来说,如果使用值传递,会出现一个无限循环,并最终出现错误。举个例子:一个类为temp,假设拷贝构造函数为值传递:temp (const temp C){ ...}temp A; //生成了一个temp类的对象temp B = A; //将会调用拷贝构造函数此时,B需要调用其拷贝构造函数,需要将A进行值传递进入B的拷贝构造函数,而在进行值传递时,B的拷贝构造函数会生成一个...
原创
发布博客 2019.07.09 ·
1215 阅读 ·
14 点赞 ·
0 评论 ·
21 收藏

神经网络的FLOPs计算(一):理论篇

前言在深度学习的研究中,神经网络有时候不光要求网络的精度,在调整模型或者精简模型的时候,需要知道模型的运算量有多大。一般来说模型的参数量能够大致反映模型量级,但是运算量才是我们真正需要知道的。本系列文章旨在介绍神经网络中各种网络层的运算量计算方法,以及代码实现自动计算网络模型运算量。神经网络的计算量主要体现在卷积层、全连接层,其它的激活层、BatchNorm层、池化层等占比重较少。运算量计算...
原创
发布博客 2019.07.09 ·
7321 阅读 ·
8 点赞 ·
11 评论 ·
40 收藏

计算机内部使用补码进行计算的根本原因(个人理解)

根本原因:计算机中使用原码计算会出错是因为将机器码当作二进制进行了计算,即想当然地认为:a+b=[a]原+[b]原a + b = [a]_原 + [b]_原a+b=[a]原​+[b]原​但是,如果机器中用原码表示数字,则其规律不符合二进制的计算规则。简单解释一下,以8位二进制为例:如果使用原码,如下表机器码代表的真值正数0000 0000 ~ 0111 1111...
原创
发布博客 2019.06.04 ·
1482 阅读 ·
3 点赞 ·
3 评论 ·
3 收藏

Smooth L1 Loss(Huber):pytorch中的计算原理及使用问题

本人在进行单目深度估计实验时,使用Huber作为损失函数,也就是通常所说SmoothL1损失:SmoothL1(x,y)={0.5(xi−yi)2if ∣xi−yi∣<1 ∣xi−yi∣−0.5otherwiseSmooth_{L1}(x,y) = \begin{cases}0.5(x_i-y_i)^2 & \text{if $|x_i-...
原创
发布博客 2019.04.21 ·
22863 阅读 ·
27 点赞 ·
4 评论 ·
52 收藏

CART剪枝以及决策树剪枝中α相关问题

CART剪枝以及决策树剪枝中α相关问题CART剪枝过程问题1:$g(t)$的含义:问题2:为什么选择$g(t)$最小的$T_t$进行剪枝?问题3:剪枝过程中选取的$α$为什么一定是递增的?问题4:为什么CART剪枝过程中的子树序列$T_1,T_2,…,T_n$分别是区间$α∈[α_i , α_{(i+1)} )$的最优子树?问题5:$α$在一般决策树剪枝过程中的意义CART剪枝过程CART的剪...
原创
发布博客 2019.03.26 ·
1627 阅读 ·
16 点赞 ·
4 评论 ·
34 收藏

nyudv2-40 数据集在哪里下载,官网上有894类的,怎么变成40类?

答:

有兴趣可以看看这篇博客,https://blog.csdn.net/weixin_43915709/article/details/88774325
简单说明了一下

回答问题 2019.03.24

如何将NYUDv2数据集标签从894类转换为40类(NYUDv2-40)或者13类?

将NYUDv2数据集从894类转换为40类(NYUDv2-40)或者13类在使用NYUDv2数据集进行语义分割的时候会发现,从官网直接下载的数据集有894类,而发现在许多论文中描述的是40类,有的也称作nyudv2-40;一些研究中也出现了13类的标签。可参考:https://github.com/ankurhanda/nyuv2-meta-data这里给出了40分类的label数据集:la...
原创
发布博客 2019.03.24 ·
4941 阅读 ·
6 点赞 ·
21 评论 ·
28 收藏