# 7-1 深入虎穴

7-1 深入虎穴

著名的王牌间谍 007 需要执行一次任务,获取敌方的机密情报。已知情报藏在一个地下迷宫里,迷宫只有一个入口,里面有很多条通路,每条路通向一扇门。每一扇门背后或者是一个房间,或者又有很多条路,同样是每条路通向一扇门…… 他的手里有一张表格,是其他间谍帮他收集到的情报,他们记下了每扇门的编号,以及这扇门背后的每一条通路所到达的门的编号。007 发现不存在两条路通向同一扇门。
内线告诉他,情报就藏在迷宫的最深处。但是这个迷宫太大了,他需要你的帮助 —— 请编程帮他找出距离入口最远的那扇门。

输入格式:

输入首先在一行中给出正整数 N(<10^​5​​ ),是门的数量。最后 N 行,第 i 行(1≤i≤N)按以下格式描述编号为 i 的那扇门背后能通向的门:
K D[1] D[2] ... D[K]
其中 K 是通道的数量,其后是每扇门的编号。

输出格式:

在一行中输出距离入口最远的那扇门的编号。题目保证这样的结果是唯一的。

输入样例:

13
3 2 3 4
2 5 6
1 7
1 8
1 9
0
2 11 10
1 13
0
0
1 12
0
0

输出样例:

12

代码:

#include<iostream>
#include<queue>
using namespace std;

struct node
{
    int *arrlist;
    int size;
};

void test(node *arr,int n){
    for (int i = 1; i <= n;i++){
        for (int j = 0; j < arr[i].size;j++){
            cout << arr[i].arrlist[j] << ends;
        }
        cout << endl;
    }
}

int findroot(int *vis,int n){
    for (int i = 1; i <= n;i++){
        if (vis[i]==0)
            return i;
    }
    return 0;
}

//层次遍历,最后出队的元素就是最深层的元素
int find(node *arr,int n,int root){
    queue<int> s;
    s.push(root);
    int tar = 0;
    while(!s.empty()){
        //出队
        int val = s.front();
        tar = val;
        s.pop();
        //进队
        for (int i = 0;i<arr[val].size;i++){
            s.push(arr[val].arrlist[i]);
        }
        
    }
    return tar;
}

int main(){
    int n;
    cin>>n;
    
	//用于标记入度,入度为0的是根节点
    int *vis = new int[n+1];
    vis[0] = 1;
    for (int i = 1; i <= n;i++){
        vis[i] = 0;
    }

    node *arr = new node[n];
    for(int i=1;i<=n;i++){
        int k;
        cin>>k;
        int *List = new int[k];
        for(int j=0;j<k;j++){
            int road;
            cin >> road;
            List[j] = road;
            vis[road] = 1;
        }
        arr[i].arrlist = List;
        arr[i].size = k;
    }


    int root = findroot(vis,n);
    if(!root)
        return 0;

    int res = find(arr, n,root);
    cout << res;
    return 0;
}
### PTA 深入虎穴 解题思路 此问题可以被建模为一棵树的遍历问题,目标是从根节点出发找到离它最远的一片叶子节点。由于每扇门可能有多条通路指向其他门,因此可以通过构建邻接表来表示这种关系。 #### 数据结构设计 为了存储迷宫的信息,我们可以使用一个数组 `adj` 来保存每个门对应的子门列表。具体来说,对于每一个门 $i$,我们记录它的所有子门编号。这样做的好处是可以方便地进行深度优先搜索(DFS)或广度优先搜索(BFS)。这里推荐使用 BFS 方法求解最大路径长度及其对应的目标门号。 #### 广度优先搜索算法流程 1. 初始化队列并将起点加入队列; 2. 使用辅助变量记录当前层数的最大值及相应的位置索引; 3. 当前层的所有结点扩展完毕后再进入下一层继续探索直到整个图都被访问过为止; 以下是基于上述分析的具体C++实现: ```cpp #include <iostream> #include <vector> #include <queue> using namespace std; int main(){ int N; cin >> N; vector<vector<int>> adj(N+1, vector<int>()); for(int i=1;i<=N;i++){ int K,D; cin >> K; while(K--){ cin >> D; adj[i].push_back(D); } } queue<pair<int,int>> q;//pair<door_id,distance> bool visited[N+1]; fill(visited+1,visited+N+1,false); q.push({1,0}); visited[1]=true; pair<int,int> res={1,0}; while(!q.empty()){ auto p=q.front();q.pop(); if(p.second > res.second){ res=p; } for(auto &next_door : adj[p.first]){ if(!visited[next_door]){ visited[next_door]=true; q.push({next_door,p.second+1}); } } } cout << res.first; } ``` 这段程序首先读取输入数据并建立相应的邻接表表示法。接着利用队列完成层次遍历,在过程中不断更新发现的新纪录即更远处的那个门号与距离。最终输出的是距入口最深位置处的门号码[^1][^2]. ### 注意事项 - 时间复杂度O(n),空间复杂度也是O(n)。 - 假设所有的测试案例都满足给定条件,并且不会存在环形连接的情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值