Pytorch搭建ResNet系列网络 Pytorch搭建ResNet18、ResNet34、ResNet50、ResNet101、ResNet152系列网络。本篇博客对PyTorch官方源码实现进行了简化,重点学习ResNet系列网络结构之间的区别。
论文阅读笔记|Deep Image Homography Estimation 基于卷积神经网络强大的特征提取能力,本文构造了一个VGG风格的回归网络,可以从两幅图像中直接学习单应性变换的参数,在合成数据集上取得了比ORB更好的效果。
Pytorch加载图片数据集的两种方式 在Pytorch中加载图片数据集一般有两种方法。第一种是使用 torchvision中的datasets.ImageFolder来读取图片然后用 DataLoader来并行加载,适合图片分类问题,简单但不灵活;第二种是通过继承 torch.utils.data.Dataset 实现用户自定义读取数据集然后用 DataLoader来并行加载,较为灵活。下面分别介绍一下。
Tensorflow2.0加载图片数据集的两种方式 在tensorflow2.0中加载图片数据集一般有两种方式,第一种是使用tf.keras中的ImageDataGenerator生成器,适合图片分类问题,简单但不灵活;第二种是使用tf.data.Dataset搭配tf.image中的一些图片处理方法,较为灵活。下面分别介绍一下。
论文阅读笔记|Unsuperised Deep Homography 本文提出了一种无监督学习算法,设计了一个卷积神经网络进行单应性估计,使用了不需要人工标签的光度损失函数,并引入了张量直接线性变换层和空间变换层,在合成数据集和真实数据集上都取得了较好的效果。