一、pandas对整列赋值
这个比较正常,一般直接赋值就可以:
x = pd.DataFrame({'A': ['1', '2', '3', None, None],
'B': ['4', '5', '6', '7', None]})
x['A'] = ['10', '11', '12', '13', '14']

二、pandas对非整列赋值
1、用单个值赋值
x = pd.DataFrame({'A': ['1', '2', '3', None, None],
'B': ['4', '5', '6', '7', None]})
index = x['A'].isna()
x[index]['A'] = 100

是不是很奇怪,没有赋值成功!!
2、用多个值赋值
x = pd.DataFrame({'A': ['1', '2', '3', None, None],
'B': ['4', '5', '6', '7', None]})
index = x['A'].isna()
x[index] = [100, 200]

报错了!!提示说,要用.loc赋值,那我们试一下。
3、要用.loc赋值
x = pd.DataFrame({'A': ['1', '2', '3', None, None],
'B': ['4', '5', '6', '7', None]})
index = x['A'].isna()
x.loc[index, ['A']] = [100, 200]

报错,这是因为shape原因。
改成:成功赋值
x.loc[index, ['A']] = [['100'], ['200']]

三、用数据的另外一列赋值
1、错误方式
x = pd.DataFrame({'A': ['1', '2', '3', '', ''],
'B': ['4', '5', '6', '7', '']})
index = x['A'].isna()
x.loc[index, ['A']] = x.loc[index, ['B']]

正确方式
x = pd.DataFrame({'A': ['1', '2', '3', '', ''],
'B': ['4', '5', '6', '7', '']})
index = x['A'].isna()
x.loc[index, ['A']] = x.loc[index, ['B']].copy().values.tolist()


本文介绍了使用Pandas进行数据赋值的多种方法,包括整列赋值、非整列赋值及用另一列数据赋值等场景,并针对每种情况提供了具体的实现步骤和注意事项。
851





