关于BKMR model 使用时候遇见的问题

关于BKMR model 使用时候遇见的问题

BKMR (贝叶斯核函数回归)可以用于分析多种暴露物对结局的联合作用和影响
教程链接:
https://jenfb.github.io/bkmr/SimData1.html#3_fit_the_bkmr_model (for gaussian)

https://jenfb.github.io/bkmr/ProbitEx.html (for binomial)
When fitting probit BKMR, one can occasionally get the following error:

"Error in checkSymmetricPositiveDefinite(H, name = “H”) : H must be positive definite"

A solution that often works is to set the argument ‘est.h = TRUE’ in the kmbayes function. Doing this leads to a different sampler being used for one of the steps of the MCMC algorithm, which can get around this error.
参考文献:
Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Jennifer F. Bobb, Birgit Claus Henn, Linda Valeri & Brent A. Coull Environmental Health 2018.

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值