学前必备知识
除数,整除:
约数:设n为非负整数,d为正整数,若n/d为整数,则称d整除n,记作为 d|n。 此时,称d为n的约数,或因数,或因子,而称n为d的倍数 注意:任何整数都整除0。
最大公约数:
前提:设a , b为非负整数,d为正整数,若d | a 且 d | b, 则称 d 为 a 和 b 的公约数, 或公因数, 或公因子。
a 和 b 的所有公约数中最大的数称为 a 和 b 的最大公约数,或最大公因数, 或最大公因子, 记作 gcd(a, b)。性质:1:gcd(a, b) = gcd(b, a) 2:若gcd(a, b) = 1, 则称a和b互质 3: gcd(a, b) = gcd(b, b % a) 注意:正整数都是0 和 0 的公约数, 故 gcd(0, 0)不存在。且对任意正整数a,都有 gcd(0, a) = a。
最小公倍数:
前提:设a, b为正整数,m 为非负整数, 若 a | m 且 b | m,则称m 为 a 和 b 的公倍数。
a 和 b 的所有公倍数中最小的正数称为a 和 b 的最小公倍数,记为 lcm(a, b)。性质:1.lcm(a, b) = lcm(b, a) lcm与gcd的关系式: lcm(a, b) = ab / gcd(a, b). 注意:写代码防止溢出建议用:a / gcd(a, b) * b*
代码实现:
#include<iostream>
#include<cstdio>
using namespace std;
int gcd(int a, int b){
if(b == 0)
return a;
return gcd(b, a % b);
}
int lcm(int a, int b){
return a * b / gcd(a, b);
}
int main(){
int x, y;
scanf("%d%d",&x, &y);
printf("%d\n", gcd(x, y));
printf("%d\n", lcm(x, y));
return 0;
}
注意:上面是两个数的gcd和lcm
2203

被折叠的 条评论
为什么被折叠?



