数论-----最大公约数和最小公倍数

学前必备知识

除数,整除:

约数:设n为非负整数,d为正整数,若n/d为整数,则称d整除n,记作为 d|n。 此时,称d为n的约数,或因数,或因子,而称n为d的倍数 注意:任何整数都整除0。

最大公约数:

前提:设a , b为非负整数,d为正整数,若d | a 且 d | b, 则称 d 为 a 和 b 的公约数, 或公因数, 或公因子。
a 和 b 的所有公约数中最大的数称为 a 和 b 的最大公约数,或最大公因数, 或最大公因子, 记作 gcd(a, b)。性质:1:gcd(a, b) = gcd(b, a) 2:若gcd(a, b) = 1, 则称a和b互质 3: gcd(a, b) = gcd(b, b % a) 注意:正整数都是0 和 0 的公约数, 故 gcd(0, 0)不存在。且对任意正整数a,都有 gcd(0, a) = a。

最小公倍数:

前提:设a, b为正整数,m 为非负整数, 若 a | m 且 b | m,则称m 为 a 和 b 的公倍数。
a 和 b 的所有公倍数中最小的正数称为a 和 b 的最小公倍数,记为 lcm(a, b)。性质:1.lcm(a, b) = lcm(b, a) lcm与gcd的关系式: lcm(a, b) = ab / gcd(a, b). 注意:写代码防止溢出建议用:a / gcd(a, b) * b*

代码实现:

#include<iostream>
#include<cstdio>
using namespace std;

int gcd(int a, int b){
	if(b == 0)
	return a;
	
	return gcd(b, a % b);
}

int lcm(int a, int b){
	return a * b / gcd(a, b);
}

int main(){
	int x, y;
	scanf("%d%d",&x, &y);
	printf("%d\n", gcd(x, y));
	printf("%d\n", lcm(x, y));
	return 0;
}

注意:上面是两个数的gcd和lcm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值