梯度剪裁的原因
神经网络是通过梯度下降来学习的。而梯度爆炸问题一般会随着网络层数的增加而变得越来越明显。如果发生梯度爆炸,那么就是学过了,会直接跳过最优解。
例如:在反向传播中,假设第一层倒数乘以权重> 1,随着向前网络的传播的层数越多,梯度可能会越来越大。 (梯度消失相反)
所以需要梯度裁剪,避免模型越过最优点。
梯度裁剪的使用
常见的梯度裁剪有两种
- 确定一个范围,如果参数的gradient超过了,直接裁剪
- 根据若干个参数的gradient组成的的vector的L2 Norm进行裁剪
第一种方法,比较直接,对应于pytorch中的nn.utils.clip_grad_value(parameters, clip_value). 将所有的参数剪裁到 [ -clip_value, clip_value]
第二中方法也更常见,对应于pytorch中clip_grad_norm_(parameters, max_norm, norm_type=2)。 如果所有参数的gradient组成的向量的L2 norm 大于max norm,那么需要根据L2 norm/max_norm 进行缩放。从而使得L2 norm 小于预设的 clip_norm
梯度裁剪的使用位置
在backward得到梯度之后,step()更新之前,使用梯度剪裁。从而完成计算完梯度后,进行裁剪,然后进行网络更新的过程。