深度学习之梯度裁剪(Gradient Clipping)

梯度剪裁是解决神经网络训练中梯度爆炸问题的有效方法。通过限制梯度的范围或基于L2范数进行缩放,可以防止模型在优化过程中越过最优解。在PyTorch中,这通常在backward计算梯度后,step更新权重之前进行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

梯度剪裁的原因

神经网络是通过梯度下降来学习的。而梯度爆炸问题一般会随着网络层数的增加而变得越来越明显。如果发生梯度爆炸,那么就是学过了,会直接跳过最优解。

例如:在反向传播中,假设第一层倒数乘以权重> 1,随着向前网络的传播的层数越多,梯度可能会越来越大。 (梯度消失相反)

所以需要梯度裁剪,避免模型越过最优点。

梯度裁剪的使用

常见的梯度裁剪有两种

  • 确定一个范围,如果参数的gradient超过了,直接裁剪
  • 根据若干个参数的gradient组成的的vector的L2 Norm进行裁剪

第一种方法,比较直接,对应于pytorch中的nn.utils.clip_grad_value(parameters, clip_value). 将所有的参数剪裁到 [ -clip_value, clip_value]

第二中方法也更常见,对应于pytorch中clip_grad_norm_(parameters, max_norm, norm_type=2)。 如果所有参数的gradient组成的向量的L2 norm 大于max norm,那么需要根据L2 norm/max_norm 进行缩放。从而使得L2 norm 小于预设的 clip_norm


梯度裁剪的使用位置

在backward得到梯度之后,step()更新之前,使用梯度剪裁。从而完成计算完梯度后,进行裁剪,然后进行网络更新的过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值