题意的意思就是给你个N,K;
求第K小的X,满足X2−N∗Y2=1X^2-N*Y^2=1X2−N∗Y2=1(X,Y要为正整数);
显然这是一个佩尔方程。
定义:若一个不定方程具有这样的形式:x2−ny2=1x^2-ny^2=1x2−ny2=1
则称此二元二次不定方程为佩尔方程.
在整数域解中
(1)nnn为完全平方数时
则原式化为x2−(ny)2=1x^2-(\sqrt{n}y)^2=1x2−(ny)2=1
即(x−ny)⋅(x+ny)=1(x-\sqrt{n}y)\cdot(x+\sqrt{n}y)=1(x−ny)⋅(x+ny)=1
显然
要使等式成立,只有|(x−ny)∣=∣(x+ny)∣=1(x-\sqrt{n}y)|=|(x+\sqrt{n}y)|=1(x−ny)∣=∣(x+ny)∣=1
即XXX只有解x=1,−1,y=0x=1,-1,y=0x=1,−1,y=0
(2)nnn为非平方数
若有两组解(x1,y1x_1,y_1x1,y1)(x2,y2x_2,y_2x2,y2)
则(x12−ny12)⋅(x22−ny22)=1(x_1^2-ny_1^2)\cdot(x_2^2-ny_2^2)=1(x12−ny12)⋅(x22−ny22)=1
即(x12x22+n2y12y22)−n(x12y22+x22y12)=1(x_1^2x_2^2+n^2y_1^2y_2^2)-n(x_1^2y_2^2+x_2^2y_1^2)=1(x12x22+n2y12y22)−n(x12y22+x22y12)=1
左右边加上nx1x2y1y2nx_1x_2y_1y_2nx1x2y1y2等式仍成立
所以(x1x2+ny1y2)2−n(x1,y2+y1x2)2=1(x_1x_2+ny_1y_2)^2-n(x_1,y_2+y_1x_2)^2=1(x1x2+ny1y2)2−n(x1,y2+y1x2)2=1
所以
x3=x1x2+ny1y2x_3=x_1x_2+ny_1y_2x3=x1x2+ny1y2
y3=x1y2+y1x2y_3=x_1y_2+y_1x_2y3=x1y2+y1x2
回到本题
X,YX,YX,Y都必须是正整数,所以我们要暴力求出一组最小特组(x1,y1)(x_1,y_1)(x1,y1)
ll y=1,x;
while(1)
{
x=sqrt(n*y*y+1);
if(x*x-n*y*y==1)break;
y++;
}
则answer=answer=answer=(x1,ny1y1,x1)k−1{x_1,ny_1\choose y_1,x_1}^{k-1}(y1,x1x1,ny1)k−1(x1y1){x_1\choose y_1}(y1x1)
由矩阵快速幂求即可
#include<bits/stdc++.h>
#define ll long long
#define endl '\n'
#define rep(i,l,r) for(int i=l;i<=r;i++)
#define per(i,r,l) for(int i=r;i>=l;i--)
const int MX=4e2+7;
const int mod=8191;
using namespace std;
int p[MX],k[MX];
const int m=2;
ll qpow(ll a,ll b,ll MOD=mod){for(ll ans=1;;a=a*a%MOD,b>>=1){if(b&1)ans=ans*a%MOD;if(!b)return ans;}}
ll inv(ll a,ll MOD=mod){return qpow(a,MOD-2,MOD);}
ll __gcd(ll a,ll b){return a*b/__gcd(a,b);}
ll a[m][m],b[m][m];
void mul(ll a[m][m],ll b[m][m])
{
ll c[m][m]={};
for(int i=0;i<m;i++)
{
for(int j=0;j<m;j++)
{
for(int k=0;k<m;k++)
c[i][j]=(c[i][j]+b[i][k]*a[k][j])%mod;
}
}
memcpy(a,c,sizeof c);
}
int main()
{
ios::sync_with_stdio(0),cin.tie(0);
ll n,k;
while(cin>>n>>k){
int m=sqrt(n+0.5);
if(m*m==n||k<=0){
cout<<"No answers can meet such conditions"<<endl;
continue;
}
ll y=1,x;
while(1)
{
x=sqrt(n*y*y+1);
if(x*x-n*y*y==1)break;
y++;
}
a[0][0]=x;
a[0][1]=n*y%mod;
a[1][0]=y;
a[1][1]=x;
b[0][0]=x;
b[1][0]=y;
k--;
while(k)
{
if(k&1)
mul(b,a);
mul(a,a);
k>>=1;
}
cout<<b[0][0]<<endl;
}
}
本文深入探讨了佩尔方程x^2 - ny^2 = 1的求解方法,特别是当n为非平方数时,如何找到最小的正整数解(x1, y1),并利用矩阵快速幂算法高效计算第k小的解。通过暴力搜索最小特解,再运用矩阵运算,文章提供了一种解决此类问题的有效途径。
271

被折叠的 条评论
为什么被折叠?



