HDU - 3292(佩尔方程)

本文深入探讨了佩尔方程x^2 - ny^2 = 1的求解方法,特别是当n为非平方数时,如何找到最小的正整数解(x1, y1),并利用矩阵快速幂算法高效计算第k小的解。通过暴力搜索最小特解,再运用矩阵运算,文章提供了一种解决此类问题的有效途径。
部署运行你感兴趣的模型镜像

题意的意思就是给你个N,K;
求第K小的X,满足X2−N∗Y2=1X^2-N*Y^2=1X2NY2=1(X,Y要为正整数);
显然这是一个佩尔方程。
定义:若一个不定方程具有这样的形式:x2−ny2=1x^2-ny^2=1x2ny2=1
则称此二元二次不定方程为佩尔方程.
在整数域解中
(1)nnn为完全平方数时
则原式化为x2−(ny)2=1x^2-(\sqrt{n}y)^2=1x2(ny)2=1
(x−ny)⋅(x+ny)=1(x-\sqrt{n}y)\cdot(x+\sqrt{n}y)=1(xny)(x+ny)=1
显然
要使等式成立,只有|(x−ny)∣=∣(x+ny)∣=1(x-\sqrt{n}y)|=|(x+\sqrt{n}y)|=1(xny)=(x+ny)=1
XXX只有解x=1,−1,y=0x=1,-1,y=0x=1,1,y=0
(2)nnn为非平方数
若有两组解(x1,y1x_1,y_1x1,y1)(x2,y2x_2,y_2x2,y2)
(x12−ny12)⋅(x22−ny22)=1(x_1^2-ny_1^2)\cdot(x_2^2-ny_2^2)=1x12ny12(x22ny22)=1
(x12x22+n2y12y22)−n(x12y22+x22y12)=1(x_1^2x_2^2+n^2y_1^2y_2^2)-n(x_1^2y_2^2+x_2^2y_1^2)=1(x12x22+n2y12y22)n(x12y22+x22y12)=1
左右边加上nx1x2y1y2nx_1x_2y_1y_2nx1x2y1y2等式仍成立
所以(x1x2+ny1y2)2−n(x1,y2+y1x2)2=1(x_1x_2+ny_1y_2)^2-n(x_1,y_2+y_1x_2)^2=1x1x2+ny1y2)2n(x1,y2+y1x2)2=1
所以
x3=x1x2+ny1y2x_3=x_1x_2+ny_1y_2x3=x1x2+ny1y2
y3=x1y2+y1x2y_3=x_1y_2+y_1x_2y3=x1y2+y1x2
回到本题
X,YX,YX,Y都必须是正整数,所以我们要暴力求出一组最小特组(x1,y1)(x_1,y_1)(x1,y1)

  ll y=1,x;
  while(1)
  {
      x=sqrt(n*y*y+1);
      if(x*x-n*y*y==1)break;
      y++;
  }

answer=answer=answer=(x1,ny1y1,x1)k−1{x_1,ny_1\choose y_1,x_1}^{k-1}(y1,x1x1,ny1)k1(x1y1){x_1\choose y_1}(y1x1)
由矩阵快速幂求即可

#include<bits/stdc++.h>
#define ll long long
#define endl '\n'
#define rep(i,l,r) for(int i=l;i<=r;i++)
#define per(i,r,l) for(int i=r;i>=l;i--)
const int MX=4e2+7;
const int mod=8191;
using namespace std;
int p[MX],k[MX];
const int m=2;
ll qpow(ll a,ll b,ll MOD=mod){for(ll ans=1;;a=a*a%MOD,b>>=1){if(b&1)ans=ans*a%MOD;if(!b)return ans;}}
ll inv(ll a,ll MOD=mod){return qpow(a,MOD-2,MOD);}
ll __gcd(ll a,ll b){return a*b/__gcd(a,b);}
ll a[m][m],b[m][m];
void mul(ll a[m][m],ll b[m][m])
{
    ll c[m][m]={};
    for(int i=0;i<m;i++)
    {
        for(int j=0;j<m;j++)
        {
            for(int k=0;k<m;k++)
                c[i][j]=(c[i][j]+b[i][k]*a[k][j])%mod;
        }
    }
    memcpy(a,c,sizeof c);
}

int main()
{
  ios::sync_with_stdio(0),cin.tie(0);
  ll n,k;
  while(cin>>n>>k){
    int m=sqrt(n+0.5);
  if(m*m==n||k<=0){
    cout<<"No answers can meet such conditions"<<endl;
    continue;
  }
  ll y=1,x;
  while(1)
  {
      x=sqrt(n*y*y+1);
      if(x*x-n*y*y==1)break;
      y++;
  }
  a[0][0]=x;
  a[0][1]=n*y%mod;
  a[1][0]=y;
  a[1][1]=x;
  b[0][0]=x;
  b[1][0]=y;
  k--;
  while(k)
  {
      if(k&1)
        mul(b,a);
      mul(a,a);
      k>>=1;
  }
  cout<<b[0][0]<<endl;
  }
}

您可能感兴趣的与本文相关的镜像

PyTorch 2.6

PyTorch 2.6

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值