Python算法在自然语言处理中的应用!

🏆本文收录于「编程与技术实战」专栏,此专栏涵盖了C/C++编程、人工智能、数据结构、机器学习等技术领域的内容,助你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!

1. 文本预处理

文本预处理是自然语言处理中的重要一步,主要目的是清洗原始文本,将其转换成可以进行分析和建模的格式。常见的预处理步骤包括:去除标点符号、转换为小写字母、去除停用词、分词、词形还原等。

示例代码:
import re
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer

# 下载必要的资源
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')

# 示例文本
text = "This is a sample sentence! We're cleaning this text using Python."

# 转小写
text = text.lower()

# 去除标点符号
text = re.sub(r'[^\w\s]', '', text)

# 分词
words = word_tokenize(text)

# 去除停用词
stop_words = set(stopwords.words('english'))
filtered_words = [word for word in words if word not in stop_words]

# 词形还原
lemmatizer = WordNetLemmatizer()
lemmatized_words = [lemmatizer.lemmatize(word) for word 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bug菌¹

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值