
🏆本文收录于「编程与技术实战」专栏,此专栏涵盖了C/C++编程、人工智能、数据结构、机器学习等技术领域的内容,助你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!
本文目录:
1. 文本预处理
文本预处理是自然语言处理中的重要一步,主要目的是清洗原始文本,将其转换成可以进行分析和建模的格式。常见的预处理步骤包括:去除标点符号、转换为小写字母、去除停用词、分词、词形还原等。
示例代码:
import re
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
# 下载必要的资源
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
# 示例文本
text = "This is a sample sentence! We're cleaning this text using Python."
# 转小写
text = text.lower()
# 去除标点符号
text = re.sub(r'[^\w\s]', '', text)
# 分词
words = word_tokenize(text)
# 去除停用词
stop_words = set(stopwords.words('english'))
filtered_words = [word for word in words if word not in stop_words]
# 词形还原
lemmatizer = WordNetLemmatizer()
lemmatized_words = [lemmatizer.lemmatize(word) for word