Quick BI功能篇之(一):20分钟入门

Quick BI功能篇之<一>20分钟入门

前言:

    最近小编帮助隔壁团队一个小姐姐解决了个大难题:给老板汇报业绩分析,频次提高、效率提升,还得保证团队中的小伙伴们都得有点大数据时代的基本数据能力。小编觉得这么好的经验可以分享给更多志同道合的朋友们,所以决定加班加点,推出Quick BI的功能、场景及技巧分享系列,为大数据时代舔砖加瓦!

    Quick BI是阿里云上面向企业和个人提供的高效数据分析及展现服务平台,承载了数据连接、数据处理、数据分析及可视化的能力。本文是Quick BI分享系列的第一篇,可以帮助大家在20分钟完成敏捷BI的认知及入门。

正文:

第一步,登录Quick BI,进入工作空间

    可以直接访问Quick BI的控制台进入工作界面。偷偷告诉你,最近Quick BI几个版本的免费试用活动还在进行中,抓紧机会哦!

第二步,连接数据源,配置数据集,原材料准备就绪。

    进入工作空间后,可以选择数据来源进行连接,数据源可以是自有的数据库,也可以是阿里云上数据库。

以阿里云上的RDS for MySQL数据库为例,相关信息填写即可添加。

更简单的是,可以直接上传本地的数据文件。

选择数据源中的一张表创建数据集。

2c980273f6f9c06b9101186cf734801e6ea3f764

可以对数据集字段支持重命名、定义格式、添加衍生字段等一系列操作,以补足实际分析场景中的数据要求。

63b3ae93e612a870563a9459c8e0a2594337ec3c

03c047854e3617a5fecc8fa563e9890e49b21f48

e010b2ef58a5a12403fb9dd4ac8f5cca5ff04d99

通俗点补充两个概念:维度-我们要分析的对象及属性,度量-描述这个对象的数值表现。不过小编请你不要担忧这个概念好难理解,Quick BI会智能识别和区分,你大概知道就行哈。

第三步,创建仪表板,拖拉拽开启分析之路。

选择需要呈现的图表,选数据、配样式,可视化就呈现出来了。多个图表构建、数据的选择与探索、图表样式的调整,就是数据分析的过程。当然,每个图表还有很多高级的功能,小编就留给大家自己上手体验啦!


22ab3f579337d89f810c13ff6afd947d3a8a0e9e
3ff1b56763f9a0e70ad9beb90d9bfa824e9ea197
分析思路+图表+数据,通过仪表板就能呈现出我们想要传递的数据真知,保存后通过分享或授权就可以让更多的小伙伴看到这个分析页面啦!妥妥地效率提升!

第四步,创建电子表格,线下Excel的技能直接搬上云。

选择需要的数据,在电子表格中进行展现和二次分析加工,是不是和小编一样觉得之前所有Excel的技能都得到了淋漓尽致的发挥,是金子总会发光,有技能总能施展呢?

第五步,创建数据门户集成分析页面、移动端访问、邮件订阅查看,数据分析结果的传播如此简单。

以上五步覆盖了Quick BI基础的数据分析功能,是不是觉得基本的入门还是非常简单的呀?俗话说得好,百闻不如一见,百见不如一干,立刻前往Quick BI体验吧。

下一篇,小编会给大家详细讲解场景篇-基于Quick BI的流量分析,敬请期待!

 

原文链接
本文为云栖社区原创内容,未经允许不得转载。

一、项目简介 本项目教程以国内电商巨头实际业务应用场景为依托,同时以阿里云ECS服务器为技术支持,紧跟大数据主流场景,对接企业实际需求,对电商数仓的常见实战指标进行了详尽讲解,让你迅速成长,获取最前沿的技术经验。 二、项目架构 版本框架:Flume、DateHub、DataWorks、MaxCompute、MySql以及QuickBI等; Flume:大数据领域被广泛运用的日志采集框架; DateHub:类似于传统大数据解决方案中Kafka的角色,提供了一个数据队列功能。对于离线计算,DataHub除了供了一个缓冲的队列作用。同时由于DataHub提供了各种与其他阿里云上下游产品的对接功能,所以DataHub又扮演了一个数据的分发枢纽工作; 据上传和下载通道,提供SQL及MapReduce等多种计算分析服务,同时还提供完善的安全解决方案; DataWorks:是基于MaxCompute计算引擎,从工作室、车间到工具集都齐备的一站式大数据工厂,它能帮助你快速完成数据集成、开发、治理、服务、质量、安全等全套数据研发工作; QuickBI & DataV:专为云上用户量身打造的新一代智能BI服务平台。 三、项目场景 数仓项目广泛应用于大数据领域,该项目技术可以高度适配电商、金融、医疗、在线教育、传媒、电信、交通等各领域; 四、项目特色 本课程结合国内多家企业实际项目经验。从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建基于阿里云服务器的大数据集群。采用阿里云ECS服务器作为数据平台,搭建高可用的、高可靠的Flume数据采集通道,运用阿里云DateHub构建中间缓冲队列并担任数据分发枢纽将数据推送至阿里自主研发的DataWorks对数据进行分层处理,采用MaxCompute作为处理海量数据的方案,将计算结果保存至MySQL并结合阿里的QuickBI工作做最终数据展示。
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页